Corner- and edge-mode enhancement of near-field radiative heat transfer

[ad_1]

  • Planck, M. The Theory of Heat Radiation (transl. Masius, M.) (P. Blakiston’s Son & Co., 1914).

  • Mulet, J. P., Joulain, K., Carminati, R. & Greffet, J. J. Enhanced radiative heat transfer at nanometric distances. Microscale Thermophys. Eng. 6, 209–222 (2002).

    Article 

    Google Scholar
     

  • Joulain, K., Mulet, J. P., Marquier, F., Carminati, R. & Greffet, J. J. Surface electromagnetic waves thermally excited: radiative heat transfer, coherence properties and Casimir forces revisited in the near field. Surf. Sci. Rep. 57, 59–112 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rousseau, E., Laroche, M. & Greffet, J. J. Radiative heat transfer at nanoscale: closed-form expression for silicon at different doping levels. J. Quant. Spectrosc. Radiat. Transf. 111, 1005–1014 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Song, B. et al. Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps. Nat. Nanotechnol. 11, 509–514 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lim, M., Song, J., Lee, S. S. & Lee, B. J. Tailoring near-field thermal radiation between metallo-dielectric multilayers using coupled surface plasmon polaritons. Nat. Commun. 9, 4302 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeSutter, J., Tang, L. & Francoeur, M. A near-field radiative heat transfer device. Nat. Nanotechnol. 14, 751–755 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • St-Gelais, R., Zhu, L., Fan, S. & Lipson, M. Near-field radiative heat transfer between parallel structures in the deep subwavelength regime. Nat. Nanotechnol. 11, 515–519 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo, X. et al. Observation of near-field thermal radiation between coplanar nanodevices with subwavelength dimensions. Nano Lett. 24, 1502–1509 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berini, P. Plasmon–polariton modes guided by a metal film of finite width. Opt. Lett. 24, 1011–1013 (1999).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Berini, P. Plasmon–polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures. Phys. Rev. B 61, 10484 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Salihoglu, H. et al. Near-field thermal radiation between two plates with sub-10 nm vacuum separation. Nano Lett. 20, 6091–6096 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mittapally, R. et al. Probing the limits to near-field heat transfer enhancements in phonon-polaritonic materials. Nano Lett. 23, 2187–2194 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ito, K., Miura, A., Iizuka, H. & Toshiyoshi, H. Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer. Appl. Phys. Lett. 106, 083504 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Watjen, J. I., Zhao, B. & Zhang, Z. M. Near-field radiative heat transfer between doped-Si parallel plates separated by a spacing down to 200 nm. Appl. Phys. Lett. 109, 203112 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Ghashami, M. et al. Precision measurement of phonon-polaritonic near-field energy transfer between macroscale planar structures under large thermal gradients. Phys. Rev. Lett. 120, 175901 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, L., DeSutter, J. & Francoeur, M. Near-field radiative heat transfer between dissimilar materials mediated by coupled surface phonon-and plasmon-polaritons. ACS Photon. 7, 1304–1311 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ying, X., Sabbaghi, P., Sluder, N. & Wang, L. Super-Planckian radiative heat transfer between macroscale surfaces with vacuum gaps down to 190 nm directly created by SU-8 posts and characterized by capacitance method. ACS Photon. 7, 190–196 (2019).

    Article 

    Google Scholar
     

  • Polder, D. V. H. M. & Van Hove, M. Theory of radiative heat transfer between closely spaced bodies. Phys. Rev. B 4, 3303 (1971).

    Article 
    ADS 

    Google Scholar
     

  • Rytov, S. M., Kravtsov, Y. A. & Tatarskii, V. I. Principles of Statistical Radiophysics (Springer, 1989).

  • Lussange, J. et al. Radiative heat transfer between two dielectric nanogratings in the scattering approach. Phys. Rev. B 86, 085432 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Guha, B., Otey, C., Poitras, C. B., Fan, S. & Lipson, M. Near-field radiative cooling of nanostructures. Nano Lett. 12, 4546–4550 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ito, K., Nishikawa, K., Miura, A., Toshiyoshi, H. & Iizuka, H. Dynamic modulation of radiative heat transfer beyond the blackbody limit. Nano Lett. 17, 4347–4353 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lang, S. et al. Dynamic measurement of near-field radiative heat transfer. Sci. Rep. 7, 13916 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fiorino, A. et al. A thermal diode based on nanoscale thermal radiation. ACS Nano 12, 5774–5779 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, L. et al. Near-field photonic cooling through control of the chemical potential of photons. Nature 566, 239–244 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, K. et al. Near-field radiative heat transfer modulation with an ultrahigh dynamic range through mode mismatching. Nano Lett. 22, 7753–7760 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fiorino, A. et al. Nanogap near-field thermophotovoltaics. Nat. Nanotechnol. 13, 806–811 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Inoue, T. et al. One-chip near-field thermophotovoltaic device integrating a thin-film thermal emitter and photovoltaic cell. Nano Lett. 19, 3948–3952 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhatt, G. R. et al. Integrated near-field thermo-photovoltaics for heat recycling. Nat. Commun. 11, 2545 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lucchesi, C. et al. Near-field thermophotovoltaic conversion with high electrical power density and cell efficiency above 14%. Nano Lett. 21, 4524–4529 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mittapally, R. et al. Near-field thermophotovoltaics for efficient heat to electricity conversion at high power density. Nat. Commun. 12, 4364 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walter, L. P., Tervo, E. J. & Francoeur, M. Near-field radiative heat transfer between irregularly shaped dielectric particles modeled with the discrete system Green’s function method. Phys. Rev. B 106, 195417 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tang, L. & Dames, C. Effects of thermal annealing on thermal conductivity of LPCVD silicon carbide thin films. J. Appl. Phys. 134, 165101 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, D. et al. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83, 2934–2936 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shi, L. et al. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Transfer 125, 881–888 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Sadat, S. et al. Room temperature picowatt-resolution calorimetry. Appl. Phys. Lett. 99, 043106 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Sadat, S., Meyhofer, E. & Reddy, P. Resistance thermometry-based picowatt-resolution heat-flow calorimeter. Appl. Phys. Lett. 102, 163110 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Thompson, D. et al. Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit. Nature 561, 216–221 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Modest, M. F. Radiative Heat Transfer 3rd edn (Academic Press, 2013).

  • Archambault, A., Teperik, T. V., Marquier, F. & Greffet, J. J. Surface plasmon Fourier optics. Phys. Rev. B 79, 195414 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Francoeur, M., Mengüç, M. P. & Vaillon, R. Spectral tuning of near-field radiative heat flux between two thin silicon carbide films. J. Phys. D 43, 075501 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Novotny, L. & Hecht, B. Principles of Nano-optics (Cambridge Univ. Press, 2012).

  • Corrêa, L. M., Walter, L. P., Čas, J. L. & Francoeur, M. DSGF solver. Zenodo https://doi.org/10.5281/zenodo.10515347 (2024).

  • [ad_2]

    Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Related Posts