Heat conductance of the quantum Hall bulk

  • Laughlin, R. B. Quantized Hall conductivity in 2 dimensions. Phys. Rev. B 23, 5632–5633 (1981).

    Article 
    ADS 

    Google Scholar
     

  • Halperin, B. I. Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25, 2185–2190 (1982).

    Article 
    ADS 

    Google Scholar
     

  • Prang, R. E. & Girvin, S. M. (eds) The Quantum Hall Effect (Springer, 1987).

  • Tsui, D. C., Störmer, H. L. & Gossard, A. C. Zero-resistance state of two-dimensional electrons in a quantizing magnetic field. Phys. Rev. B 25, 1405–1407 (1982).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Boebinger, G. S. et al. Activation energies and localization in the fractional quantum Hall effect. Phys. Rev. B 36, 7919–7929 (1987).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Boebinger, G. S., Chang, A. M., Stormer, H. L. & Tsui, D. C. Magnetic field dependence of activation energies in the fractional quantum Hall effect. Phys. Rev. Lett. 55, 1606–1609 (1985).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Kane, C. L. & Fisher, M. P. A. Quantized thermal transport in the fractional quantum Hall effect. Phys. Rev. B 55, 15832–15837 (1997).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Cappelli, A., Huerta, M. & Zemba, G. R. Thermal transport in chiral conformal theories and hierarchical quantum Hall states. Nucl. Phys. B 636, 568–582 (2002).

    Article 
    MathSciNet 
    ADS 

    Google Scholar
     

  • Read, N. & Green, D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61, 10267–10297 (2000).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Jezouin, S. et al. Quantum limit of heat flow across a single electronic channel. Science 342, 601–604 (2013).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Banerjee, M. et al. Observation of half-integer thermal Hall conductance. Nature 559, 205–210 (2018).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Banerjee, M. et al. Observed quantization of anyonic heat flow. Nature 545, 75–79 (2017).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Srivastav, S. K. et al. Universal quantized thermal conductance in graphene. Sci. Adv. 5, eaaw5798 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Dutta, B., Umansky, V., Banerjee, M. & Heiblum, M. Isolated ballistic non-abelian interface channel. Science 377, 1198–1201 (2022).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Melcer, R. A. et al. Absent thermal equilibration on fractional quantum Hall edges over macroscopic scale. Nat. Commun. 13, 376 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Srivastav, S. K. et al. Vanishing thermal equilibration for hole-conjugate fractional quantum Hall states in graphene. Phys. Rev. Lett. 126, 216803 (2021).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Srivastav, S. K. et al. Determination of topological edge quantum numbers of fractional quantum Hall phases by thermal conductance measurements. Nat. Commun. 13, 5185 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Altimiras, C. et al. Chargeless heat transport in the fractional quantum Hall regime. Phys. Rev. Lett. 109, 026803 (2012).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Venkatachalam, V., Hart, S., Pfeiffer, L., West, K. & Yacoby, A. Local thermometry of neutral modes on the quantum Hall edge. Nat. Phys. 8, 676–681 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Inoue, H. et al. Proliferation of neutral modes in fractional quantum Hall states. Nat. Commun. 5, 4067 (2014).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Tanatar, M. A., Paglione, J., Petrovic, C. & Taillefer, L. Anisotropic violation of the Wiedemann–Franz law at a quantum critical point. Science 316, 1320–1322 (2007).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Wakeham, N. et al. Gross violation of the Wiedemann–Franz law in a quasi-one-dimensional conductor. Nat. Commun. 2, 396 (2011).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Crossno, J. et al. Observation of the Dirac fluid and the breakdown of the Wiedemann–Franz law in graphene. Science 351, 1058–1061 (2016).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Melcer, R. A., Konyzheva, S., Heiblum, M. & Umansky, V. Direct determination of the topological thermal conductance via local power measurement. Nat. Phys. 19, 327–332 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Sammon, M., Banerjee, M. & Shklovskii, B. I. Giant violation of Wiedemann–Franz law in doping layers of modern AlGaAs heterostructures. Preprint at https://arxiv.org/abs/1904.04758 (2019).

  • le Sueur, H. et al. Energy relaxation in the integer quantum Hall regime. Phys. Rev. Lett. 105, 056803 (2010).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Xia, J., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Evidence for a fractionally quantized Hall state with anisotropic longitudinal transport. Nat. Phys. 7, 845–848 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Pan, W. et al. Exact quantization of the even-denominator fractional quantum Hall state at ν = 5/2 Landau level filling factor. Phys. Rev. Lett. 83, 3530–3533 (1999).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Pan, W. et al. Experimental studies of the fractional quantum Hall effect in the first excited Landau level. Phys. Rev. B 77, 075307 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Kumar, A., Csáthy, G. A., Manfra, M. J., Pfeiffer, L. N. & West, K. W. Nonconventional odd-denominator fractional quantum Hall states in the second Landau level. Phys. Rev. Lett. 105, 246808 (2010).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Rosenblatt, A. et al. Energy relaxation in edge modes in the quantum Hall effect. Phys. Rev. Lett. 125, 256803 (2020).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics Vol. 10 (Elsevier Science, 1995).

  • Oreg, Y. & Finkel’stein, A. M. Interedge interaction in the Quantum hall effect. Phys. Rev. Lett. 74, 3668–3671 (1995).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Gutman, D. B. et al. Energy transport in the Anderson insulator. Phys. Rev. B 93, 245427 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Aita, H., Arrachea, L., Naón, C. & Fradkin, E. Heat transport through quantum Hall edge states: tunneling versus capacitive coupling to reservoirs. Phys. Rev. B 88, 085122 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Balram, A. C., Jain, J. K. & Barkeshli, M. \({{\mathbb{Z}}}_{n}\) superconductivity of composite bosons and the 7/3 fractional quantum Hall effect. Phys. Rev. Res. 2, 013349 (2020).

  • Halperin, B. I. & Jain, J. K. Fractional Quantum Hall Effects (World Scientific, 2020).

  • Ma, K. K. W., Peterson, M. R., Scarola, V. W. & Yang, K. Fractional quantum Hall effect at the filling factor ν = 5/2. Preprint at https://arxiv.org/abs/2208.07908 (2022).

  • Son, D. T. Is the composite fermion a Dirac particle? Phys. Rev. 5, 031027 (2015).

    Article 

    Google Scholar
     

  • Zaletel, M. P., Mong, R. S. K., Pollmann, F. & Rezayi, E. H. Infinite density matrix renormalization group for multicomponent quantum Hall systems. Phys. Rev. B 91, 12 (2015).

    Article 

    Google Scholar
     

  • Rezayi, E. H. Landau level mixing and the ground state of the ν = 5/2 quantum Hall effect. Phys. Rev. Lett. 119, 026801 (2017).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Umansky, V. Y. et al. MBE growth of ultra-low disorder 2DEG with mobility exceeding 35 × 106 cm2/V S. J. Cryst. Growth 311, 1658–1661 (2009).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Sivre, E. et al. Heat Coulomb blockade of one ballistic channel. Nat. Phys. 14, 145–148 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Park, J., Mirlin, A. D., Rosenow, B. & Gefen, Y. Noise on complex quantum Hall edges: chiral anomaly and heat diffusion. Phys. Rev. B 99, 161302 (2019).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Aharon-Steinberg, A., Oreg, Y. & Stern, A. Phenomenological theory of heat transport in the fractional quantum Hall effect. Phys. Rev. B 99, 041302 (2019).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Johnson, J. B. Thermal agitation of electricity in conductors. Phys. Rev. 32, 97–109 (1928).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Nyquist, H. Thermal agitation of electric charge in conductors. Phys. Rev. 32, 110–113 (1928).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Fukuyama, H. Two-dimensional wigner crystal under magnetic field. Solid State Commun. 17, 1323–1326 (1975).

    Article 
    ADS 

    Google Scholar
     

  • Maciejko, J., Hsu, B., Kivelson, S. A., Park, Y. & Sondhi, S. L. Field theory of the quantum Hall nematic transition. Phys. Rev. B 88, 125137 (2013).

    Article 
    ADS 

    Google Scholar
     


  • Source link

    Total
    0
    Shares
    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Related Posts