Nano-achiral complex composites for extreme polarization optics

  • VahidMohammadi, A., Rosen, J. & Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 372, eabf1581 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nepal, D. et al. Hierarchically structured bioinspired nanocomposites. Nat. Mater. 22, 18–35 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Toyoshima, M. et al. Polarization measurements through space-to-ground atmospheric propagation paths by using a highly polarized laser source in space. Opt. Express 17, 22333–22340 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ott, M. N. et al. Space flight requirements for fiber optic components: qualification testing and lessons learned. Proc. SPIE 6193, 619309 (2006).

    Article 

    Google Scholar
     

  • Dupeyroux, J., Serres, J. R. & Viollet, S. AntBot: a six-legged walking robot able to home like desert ants in outdoor environments. Sci. Robot. 4, eaau0307 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Guo, X. et al. Full-color holographic display and encryption with full-polarization degree of freedom. Adv. Mater. 34, 2103192 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Fang, X., Ren, H. & Gu, M. Orbital angular momentum holography for high-security encryption. Nat. Photonics 14, 102–108 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Khoo, I.-C. Liquid Crystals 3rd edn (Wiley, 2022).

  • Kawamoto, H. The history of liquid-crystal displays. Proc. IEEE 90, 460–500 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Probst, P. T. et al. Mechano-tunable chiral metasurfaces via colloidal assembly. Nat. Mater. 20, 1024–1028 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, H. et al. Multiscale hierarchical structures from a nanocluster mesophase. Nat. Mater. 21, 518–525 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Giese, M., Blusch, L. K., Khan, M. K. & MacLachlan, M. J. Functional materials from cellulose-derived liquid-crystal templates. Angew. Chem. Int. Ed. 54, 2888–2910 (2015).

  • Hu, H. et al. Nanoscale Bouligand multilayers: giant circular dichroism of helical assemblies of plasmonic 1D nano-objects. ACS Nano 15, 13653–13661 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lv, J. et al. Gold nanowire chiral ultrathin films with ultrastrong and broadband optical activity. Angew. Chem. Int. Ed. 56, 5055–5060 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Mao, X. & Kotov, N. Complexity, disorder, and functionality of nanoscale materials. MRS Bull. 49, 352–364 (2024).

    Article 

    Google Scholar
     

  • Laufer, G., Kirkland, C., Cain, A. A. & Grunlan, J. C. Clay–chitosan nanobrick walls: completely renewable gas barrier and flame-retardant nanocoatings. ACS Appl. Mater. Interfaces 4, 1643–1649 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Magrini, T. et al. Transparent and tough bulk composites inspired by nacre. Nat. Commun. 10, 2794 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suzuki, N. et al. Chiral graphene quantum dots. ACS Nano 10, 1744–1755 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, W. et al. Emergence of complexity in hierarchically organized chiral particles. Science 368, 642–648 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kurtina, D. A. et al. Induction of chirality in atomically thin ZnSe and CdSe nanoplatelets: strengthening of circular dichroism via different coordination of cysteine-based ligands on an ultimate thin semiconductor core. Materials 16, 1073 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, Y. et al. Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale. Nat. Mater. 15, 461–468 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mark, A. G., Gibbs, J. G., Lee, T. C. & Fischer, P. Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nat. Mater. 12, 802–807 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, J. et al. Enhanced optical asymmetry in supramolecular chiroplasmonic assemblies with long-range order. Science 371, 1368–1374 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, D., Shah, D., Boltasseva, A. & Gogotsi, Y. MXenes for photonics. ACS Photonics 9, 1108–1116 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, R. & Li, W. High-thermal-stability and high-thermal-conductivity Ti3C2Tx MXene/poly(vinyl alcohol) (PVA) composites. ACS Omega 3, 2609–2617 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, P. et al. Photonically active bowtie nanoassemblies with chirality continuum. Nature 615, 418–424 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Buda, A. B. & Mislow, K. A Hausdorff chirality measure. J. Am. Chem. Soc. 114, 6006–6012 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Osipov, M. A., Pickup, B. T. & Dunmur, D. A. A new twist to molecular chirality: intrinsic chirality indices. Mol. Phys. 84, 1193–1206 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kim, J.-Y. et al. Assembly of gold nanoparticles into chiral superstructures driven by circularly polarized light. J. Am. Chem. Soc. 141, 11739–11744 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, S. et al. Chiral assemblies of pinwheel superlattices on substrates. Nature 612, 259–265 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Purcell-Milton, F. et al. Induction of chirality in two-dimensional nanomaterials: chiral 2D MoS2 nanostructures. ACS Nano 12, 954–964 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, H., He, H., Jiang, X., Xia, Z. & Wei, W. Preparation and characterization of chiral transition-metal dichalcogenide quantum dots and their enantioselective catalysis. ACS Appl. Mater. Interfaces 10, 30680–30688 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salij, A., Goldsmith, R. H. & Tempelaar, R. Theory of apparent circular dichroism reveals the origin of inverted and noninverted chiroptical response under sample flipping. J. Am. Chem. Soc. 143, 21519–21531 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Albano, G., Pescitelli, G. & Di Bari, L. Chiroptical properties in thin films of π-conjugated systems. Chem. Rev. 120, 10145–10243 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao, Y. et al. Extracting pure circular dichroism from hierarchically structured CdS magic cluster films. ACS Nano 16, 20457–20469 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ermolaev, G. A. et al. Giant optical anisotropy in transition metal dichalcogenides for next-generation photonics. Nat. Commun. 12, 854 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Papadopoulos, N. et al. Large birefringence and linear dichroism in TiS3 nanosheets. Nanoscale 10, 12424–12429 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tarjányi, N., Turek, I. & Martincek, I. Effect of mechanical stress on optical properties of polydimethylsiloxane II – birefringence. Opt. Mater. 37, 798–803 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Aftenieva, O., Schnepf, M., Mehlhorn, B. & König, T. A. F. Tunable circular dichroism by photoluminescent moiré gratings. Adv. Opt. Mater. 9, 2001280 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xu, L. et al. Enantiomer-dependent immunological response to chiral nanoparticles. Nature 601, 366–373 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • González-Rubio, G. et al. Micelle-directed chiral seeded growth on anisotropic gold nanocrystals. Science 368, 1472–1477 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Xiong, R. et al. Integration of optical surface structures with chiral nanocellulose for enhanced chiroptical properties. Adv. Mater. 32, 1905600 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wu, W., Battie, Y., Lemaire, V., Decher, G. & Pauly, M. Structure-dependent chiroptical properties of twisted multilayered silver nanowire assemblies. Nano Lett. 21, 8298–8303 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hubley, A. et al. Chiral perovskite nanoplatelets exhibiting circularly polarized luminescence through ligand optimization. Adv. Opt. Mater. 10, 2200394 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, J. et al. What makes efficient circularly polarised luminescence in the condensed phase: aggregation-induced circular dichroism and light emission. Chem. Sci. 3, 2737–2747 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, S. & Kotov, N. A. Circular polarized light emission in chiral inorganic nanomaterials. Adv. Mater. 35, 2108431 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Mukthar, N. F. M., Schley, N. D. & Ung, G. Strong circularly polarized luminescence at 1550 nm from enantiopure molecular erbium complexes. J. Am. Chem. Soc. 144, 6148–6153 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, Y., Li, M., Zheng, Z., Yu, Z.-Q. & Zhu, W.-H. Liquid crystal assembly for ultra-dissymmetric circularly polarized luminescence and beyond. J. Am. Chem. Soc. 145, 12951–12966 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dierking, I. Chiral liquid crystals: structures, phases, effects. Symmetry 6, 444–472 (2014).

    Article 
    ADS 

    Google Scholar
     

  • He, H. et al. Cholesteric-superhelix-enabled reconfigurable circularly polarized luminescence from uniaxially aligned upconversion nanorod films. Laser Photonics Rev. 16, 2200115 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Neshev, D. N. & Miroshnichenko, A. E. Enabling smart vision with metasurfaces. Nat. Photonics 17, 26–35 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kim, W. et al. Thermally-curable nanocomposite printing for the scalable manufacturing of dielectric metasurfaces. Microsyst. Nanoeng. 8, 73 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blell, R. et al. Generating in-plane orientational order in multilayer films prepared by spray-assisted layer-by-layer assembly. ACS Nano 11, 84–94 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, H. et al. Mueller matrix polarimetry–an emerging new tool for characterizing the microstructural feature of complex biological specimen. J. Light. Technol. 37, 2534–2548 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Arteaga, O. & Kahr, B. Mueller matrix polarimetry of bianisotropic materials. J. Opt. Soc. Am. B 36, F72–F83 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Arteaga Barriel, O. Mueller Matrix Polarimetry of Anisotropic Chiral Media. Thesis, Univ. Barcelona (2010).

  • Oliver, W. C. & Pharr, G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     


  • Source link

    Total
    0
    Shares
    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Related Posts