Negative mixing enthalpy solid solutions deliver high strength and ductility

  • Lei, Z. F. et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 563, 546–550 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Miracle, D. B. & Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, L. et al. Tailoring planar slip to achieve pure metal-like ductility in body-centred-cubic multi-principal element alloys. Nat. Mater. 22, 950–957 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, S. L. et al. Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility. Nat. Mater. 19, 1175–1181 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng, R. et al. Superior High-temperature strength in a supersaturated refractory high-entropy alloy. Adv. Mater. 33, 2102401 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Senkov, O. N. et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys Compd 509, 6043–6048 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Ma, E. & Wu, X. Tailoring heterogeneities in high-entropy alloys to promote strength-ductility synergy. Nat. Commun. 10, 5623 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Senkov, O. N. & Semiatin, S. L. Microstructure and properties of a refractory high-entropy alloy after cold working. J. Alloys Compd 649, 1110–1123 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Wang, S.-P., Ma, E. & Xu, J. New ternary equi-atomic refractory medium-entropy alloys with tensile ductility: Hafnium versus titanium into NbTa-based solution. Intermetallics 107, 15–23 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Senkov, O. N., Wilks, G. B., Scott, J. M. & Miracle, D. B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698–706 (2011).

    Article 
    CAS 

    Google Scholar
     

  • George, E. P., Raabe, D. & Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • George, E. P. & Ritchie, R. O. High-entropy materials. MRS Bull. 47, 145–150 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Li, Z. M., Pradeep, K. G., Deng, Y., Raabe, D. & Tasan, C. C. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 534, 227–230 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • An, Z. B. et al. A novel HfNbTaTiV high-entropy alloy of superior mechanical properties designed on the principle of maximum lattice distortion. J. Mater. Sci. Tech. 79, 109–117 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ma, E. & Zhu, T. Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals. Mater. Today 20, 323–331 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lilensten, L. et al. Study of a bcc multi-principal element alloy: tensile and simple shear properties and underlying deformation mechanisms. Acta Mater. 142, 131–141 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Basinski, Z. S., Szczerba, M. S. & Embury, J. D. Tensile instability in face-centred cubic materials. Philos. Mag. A 76, 743–752 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Huang, H. L. et al. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering. Adv. Mater. 29, 1701678 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Su, I.-A. et al. Strengthening mechanisms and microstructural evolution of ductile refractory medium-entropy alloy Hf20Nb10Ti35Zr35. Scr. Mater. 206, 114225 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. B. et al. Deformation twinning in Ti48.9Zr32.0Nb12.6Ta6.5 medium entropy alloy. Mater. Sci. Eng. A 809, 140931 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bu, Y. Q. et al. Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys. Mater. Today 46, 28–34 (2021).

    Article 
    CAS 

    Google Scholar
     

  • An, Z. B. et al. Spinodal-modulated solid solution delivers a strong and ductile refractory high-entropy alloy. Mater. Horiz. 8, 948–955 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mills, L. H. et al. Temperature-dependent tensile behavior of the HfNbTaTiZr multi-principal element alloy. Acta Mater. 245, 118618 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, T. X. et al. CALPHAD-aided design for superior thermal stability and mechanical behavior in a TiZrHfNb refractory high-entropy alloy. Acta Mater. 246, 118728 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Y. J. et al. Achieving high strength and ductility in high-entropy alloys via spinodal decomposition-induced compositional heterogeneity. J. Mater. Sci. Tech. 141, 149–154 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Cui, D. C. et al. Oxygen-assisted spinodal structure achieves 1.5 GPa yield strength in a ductile refractory high-entropy alloy. J. Mater. Sci. Tech. 157, 11–20 (2023).

    Article 

    Google Scholar
     

  • Williams, D. B. & Carterm, C. B. Transmission Electron Microscopy: A Textbook for Materials Science (Springer, 2009).

  • Zhang, B. et al. Element-resolved atomic structure imaging of rocksalt Ge2Sb2Te5 phase-change material. Appl. Phys. Lett. 108, 191902 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Yang, T. et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science 362, 933–937 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, X. L. Chemical short-range orders in high-/medium-entropy alloys. J. Mater. Sci. Tech. 147, 189–196 (2023).

    Article 

    Google Scholar
     

  • Dini, G., Ueji, R., Najafizadeh, A. & Monir-Vaghefi, S. M. Flow stress analysis of TWIP steel via the XRD measurement of dislocation density. Mater. Sci. Eng. A 527, 2759–2763 (2010).

    Article 

    Google Scholar
     

  • Smallman, R. E. & Westmacott, K. H. Stacking faults in face-centred cubic metals and alloys. Philos. Mag. 2, 669–683 (1957).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Eleti, R. R. et al. Plastic deformation of solid-solution strengthened Hf-Nb-Ta-Ti-Zr body-centered cubic medium/high-entropy alloys. Scri. Mater. 200, 113927 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xian, X. et al. A high-entropy V35Ti35Fe15Cr10Zr5 alloy with excellent high-temperature strength. Mater. Design 121, 229–236 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. et al. Uniting tensile ductility with ultrahigh strength via composition undulation. Nature 604, 273–279 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. et al. Dynamic mechanisms of strengthening and softening of coherent twin boundary via dislocation pile-up and cross-slip. Mater. Res. Lett. 10, 539–546 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L. et al. Lightweight Zr1.2V0.8NbTixAly high-entropy alloys with high tensile strength and ductility. Mater. Sci. Eng. A 814, 141234 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yurchenko, N. et al. Overcoming the strength-ductility trade-off in refractory medium-entropy alloys via controlled B2 ordering. Mater. Res. Lett. 10, 813–823 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Y. D. et al. Phase stability and mechanical properties of AlHfNbTiZr high-entropy alloys. Mater. Sci. Eng. A 724, 249–259 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zeng, S. et al. Microstructure and mechanical properties of lightweight Ti3Zr1.5NbVAlx (x = 0, 0.25, 0.5 and 0.75) refractory complex concentrated alloys. J. Mater. Sci. Tech. 130, 64–74 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yurchenko, N. et al. Effect of B2 ordering on the tensile mechanical properties of refractory AlxNb40Ti40V20−x medium-entropy alloys. J. Alloys Compd. 937, 168465 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ding, Q. Q. et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 574, 223–227 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, E. Unusual dislocation behavior in high-entropy alloys. Scri. Mater. 181, 127–133 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, X. F. et al. Direct observation of chemical short-range order in a medium-entropy alloy. Nature 592, 712–716 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xun, K. H. et al. Local chemical inhomogeneities in TiZrNb-based refractory high-entropy alloys. J. Mater. Sci. Tech. 135, 221–230 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bi, L. X. et al. Weak enthalpy-interaction-element-modulated NbMoTaW high-entropy alloy thin films. Appl. Surf. Sci. 565, 150462 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Williamson, G. K. & Smallman, R. E. III Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye–Scherrer spectrum. Philos. Mag. 1, 34–46 (1956).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xu, N. et al. Micromechanical behaviors of Fe20Co30Cr25Ni25 high entropy alloys with partially and completely recrystallized microstructures investigated by in-situ high-energy X-ray diffraction. Metall. Mater. Trans. A 52, 3674–3683 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Rosenauer, A. et al. Measurement of specimen thickness and composition in Al(x)Ga(1−x)N/GaN using high-angle annular dark field images. Ultramicroscopy 109, 1171–1182 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lebeau, J. M. & Stemmer, S. Experimental quantification of annular dark-field images in scanning transmission electron microscopy. Ultramicroscopy 108, 1653–1658 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • LeBeau, J. M., Findlay, S. D., Allen, L. J. & Stemmer, S. Quantitative atomic resolution scanning transmission electron microscopy. Phys. Rev. Lett. 100, 206101 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Van Aert, S. et al. Procedure to count atoms with trustworthy single-atom sensitivity. Phys. Rev. B 87, 064107 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Y. et al. Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534–538 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Senkov, O. N., Senkova, S. V. & Woodward, C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater. 68, 214–228 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cantor, B. Multicomponent high-entropy Cantor alloys. Prog. Mater Sci. 120, 100754 (2021).

  • Takeuchi, A. & Inoue, A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817–2829 (2005).

    Article 
    CAS 

    Google Scholar
     


  • Source link

    Total
    0
    Shares
    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Related Posts