Oldest thylakoids in fossil cells directly evidence oxygenic photosynthesis

  • Sánchez-Baracaldo, P., Bianchini, G., Wilson, J. D. & Knoll, A. H. Cyanobacteria and biogeochemical cycles through Earth history. Trends Microbiol. 30, 143–157 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Ostrander, C. M., Johnson, A. C. & Anbar, A. D. Earth’s first redox revolution. Annu. Rev. Earth Planet. Sci. 49, 337–366 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wilmeth, D. T. et al. Evidence for benthic oxygen production in Neoarchean lacustrine stromatolites. Geology 50, 907–911 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Slotznick, S. P. et al. Reexamination of 2.5-Ga “Whiff” of oxygen interval points to anoxic ocean before GOE. Sci. Adv. 8, eabj7190 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Demoulin, C. F. et al. Cyanobacteria evolution: insight from the fossil record. Free Rad. Biol. Med. 140, 206–223 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rippka, R., Waterbury, J. & Cohen-Bazire, G. A cyanobacterium which lacks thylakoids. Arch. Microbiol. 100, 419–436 (1974).

    Article 
    CAS 

    Google Scholar
     

  • Komarek, J. & Anagnostidis, K. in Freshwater Flora of Central Europe Vol. 19, (ed. Moltmann, U. G.) 34–36 (Spektrum Akademischer, 2008).

  • Cavalier-Smith, T. The neomuran origin of archaebacterial, the negibacterial root of the universal tree and bacterial megaclassification. Int. J. Syst. Evol. Microbiol. 52, 7–76 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shih, P. M., Hemp, J., Ward, L. M., Matzke, N. J. & Fischer, W. W. Crown group Oxyphotobacteria postdate the rise of oxygen. Geobiology 15, 19–29 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rahmatpour, N. et al. A novel thylakoid-less isolate fills a billion-year gap in the evolution of cyanobacteria. Curr. Biol. 31, 2857–2867 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fournier, G. P. et al. The Archean origin of oxygenic photosynthesis and extant cyanobacterial lineages. Proc. R. Soc. Lond. B Biol. Sci. 288, 20210675 (2021).

    CAS 

    Google Scholar
     

  • Hofmann, H. J. Precambrian microflora, Belcher Islands, Canada: significance and systematics. J. Paleontol. 50, 1040–1073 (1976).


    Google Scholar
     

  • Hodgskiss, M. S. et al. New insights on the Orosirian carbon cycle, early Cyanobacteria, and the assembly of Laurentia from the Paleoproterozoic Belcher Group. Earth Planet. Sci. Lett. 520, 141–152 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jabłońska, J. & Tawfik, D. S. The evolution of oxygen-utilizing enzymes suggests early biosphere oxygenation. Nat. Ecol. Evol. 5, 442–448 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Cardona, T., Sánchez-Baracaldo, P., Rutherford, A. W. & Larkum, A. W. D. Early Archean origin of Photosystem II. Geobiology 17, 127–150 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sánchez-Baracaldo, P. & Cardona, T. On the origin of oxygenic photosynthesis and cyanobacteria. New Phytol. 225, 1440–1446 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Blank, C. E. & Sánchez-Baracaldo, P. Timing of morphological and ecological innovations in the cyanobacteria a key to understand the rise in atmospheric oxygen. Geobiology 8, 1–23 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schirrmeister, B. E., Gugger, M. & Donoghue, P. C. Cyanobacteria and the Great Oxidation Event: evidence from genes and fossils. Palaeontology 58, 769–785 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shih, P. M. et al. Biochemical characterization of predicted Precambrian RuBisCO. Nat. Commun. 7, 10382 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwartz, R. M. & Dayhoff, M. O. Origins of prokaryotes, eukaryotes, mitochondria, and chloroplasts. Science 199, 395–403 (1978).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Golubic, S. & Hofmann, H. J. Comparison of Holocene and mid-Precambrian Entophysalidaceae (Cyanophyta) in stromatolitic algal mats: cell division and degradation. J. Paleontol. 50, 1074–1082 (1976).


    Google Scholar
     

  • Butterfield, N. J. Proterozoic photosynthesis – a critical review. Palaeontology 58, 953–972 (2015).

    Article 

    Google Scholar
     

  • Sergeev, V. N. Microfossils in cherts from the middle riphean (mesoproterozoic) Avzyan Formation, southern ural Mountains, Russian federation. Precambrian Res. 65, 231–254 (1994).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. Proterozoic stromatolitic micro-organisms from Hebei, North China: cell preservation and cell division. Precambrian Res. 38, 165–175 (1988).

  • Javaux, E. J., Knoll, A. H. & Walter, M. R. TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology 2, 121–132 (2004).

    Article 

    Google Scholar
     

  • Loron, C. C., Rainbird, R. H., Turner, E. C., Greenman, J. W. & Javaux, E. J. Organic-walled microfossils from the late Mesoproterozoic to early Neoproterozoic lower Shaler Supergroup (Arctic Canada): diversity and biostratigraphic significance. Precambrian Res. 321, 349–374 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shimoni, E., Rav-Hon, O., Ohad, I., Brumfeld, V. & Reich, Z. Three-dimensional organization of higher-plant chloroplast thylakoid membranes revealed by electron tomography. Plant Cell 17, 2580–2586 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonzalez-Esquer, C. R. et al. Cyanobacterial ultrastructure in light of genomic sequence data. Photosynth. Res. 129, 147–157 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mareš, J., Strunecký, O., Bučinská, L. & Wiedermannova, J. Evolutionary patterns of thylakoid architecture in cyanobacteria. Front. Microbiol. 10, 277 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mareš, J. et al. The primitive thylakoid-less cyanobacterium Gloeobacter is a common rock-dwelling organism. PLoS ONE 8, e66323 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nelissen, B., Van de Peer, Y., Wilmotte, A. & De Wachter, R. An early origin of platids within the cyanobacterial divergence is suggested by evolutionary trees based on complete 16S rRNA sequences. Mol. Biol. Evol. 12, 1166–1173 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Raven, J. A. & Sànchez-Baracaldo, P. Gloeobacter and the implications of a freshwater origin of cyanobacteria. Phycologia 60, 402–418 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Guéguen, N. & Maréchal, E. Origin of cyanobacterial thylakoids via a non-vesicvular glycolipid phase transition and their impact on the Great Oxygenation Event. J. Exp. Bot. 73, 2721–2734 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Pacton, M., Gorin, G. E. & Fiet, N. Unravelling the origin of ultralaminae in sedimentary organic matter: the contribution of bacteria and photosynthetic organisms. J. Sediment. Res. 78, 654–667 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Kremer, B., Kaźmierczak, J. & Środoń, J. Cyanobacterial-algal crusts from Late Ediacaran paleosols of the East European Craton. Precambrian Res. 305, 236–246 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schoenhut, K., Vann, D. R. & LePage, B. A. Cytological and ultrastructural preservation in Eocene Metasequoia leaves from the Canadian High Arctic. Am. J. Bot. 91, 816–824 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, X., Liu, W., Du, K., He, X. & Jin, J. Ultrastructural of chloroplasts in fossil Nelumbo from the Eocene of Hainan Island, South China. Plant Syst. Evol. 300, 2259–2264 (2014).

    Article 

    Google Scholar
     

  • Lepot, K. et al. Organic and mineral imprints in fossil photosynthetic mats of an East-Antarctic lake. Geobiol. 12, 424–450 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Miao, L., Moczydłowska, M., Zhu, S. & Zhu, M. New record of organic-walled, morphologically distinct microfossils from the late Paleoproterozoic ChangCheng Group in the Yanshan Range, North China. Precambrian Res. 321, 172–198 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Spinks, S. C., Schmid, S. & Pagès, A. Delayed euxinia in Paleoproterozoic intracontinental seas: vital havens for the evolution of eukaryotes. Precambrian Res. 287, 108–114 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • François, C. et al. Multi-method dating constrains the diversification of early 2 eukaryotes in the Proterozoic Mbuji-Mayi Supergroup of the D.R.Congo and the geological evolution of the Congo Basin. J. Afr. Earth Sci. 198, 104785 (2023).

  • Baludikay, B. K., Storme, J. Y., François, C., Baudet, D. & Javaux, E. J. A diverse and exquisitely preserved organic-walled microfossil assemblage from the Meso–Neoproterozoic Mbuji-Mayi Supergroup (Democratic Republic of Congo) and implications for Proterozoic biostratigraphy. Precambrian Res. 281, 166–18 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pyatiletov, V. G. Yudoma complex microfossils from southern Yakutia. Geol. Geofiz. 7, 8–20 (1980).


    Google Scholar
     

  • Hofmann, H. J. & Jackson, G. D. Shale-facies microfossils from the Proterozoic Bylot Supergroup, Baffin Island, Canada. J. Paleontol. 68, 1–35 (1994).

    Article 

    Google Scholar
     

  • Kirchhoff, H. Chloroplast ultrastructure in plants. New Phytol. 223, 565–574 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Meng, L. et al. Measuring the dynamic response of the thylakoid architecture in plant leaves by electron microscopy. Plant Direct. 4, e00280 (2020).

    Article 

    Google Scholar
     

  • Spinks, S. C., Schmid, S., Pagés, A. & Bluett, J. Evidence for SEDEX-style mineralization in the 1.7 Ga Tawallah Group, McArthur basin, Australia. Ore Geol. Rev. 76, 122–139 (2018).

    Article 

    Google Scholar
     

  • Javaux, E. J., Marshall, C. P. & Bekker, A. Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits. Nature 463, 934–938 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fatka, O. & Brocke, R. Morphological variability and method of opening of the Devonian acritarch Navifusa bacilla. Rev. Palaeobot. Palynol. 148, 108–123 (2008).

    Article 

    Google Scholar
     

  • Horodyski, R. J. & Donaldson, J. A. Microfossils from the middle Proterozoic Dismal Lakes Groups, Arctic Canada. Precambrian Res. 11, 125–159 (1980).

    Article 
    ADS 

    Google Scholar
     

  • Golubic, S., Sergeev, V. N. & Knoll, A. H. Mesoproterozoic Archaeoellipsoides: akinetes of heterocystous cyanobacteria. Lethaia 28, 285–298 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tomitani, A., Knoll, A. H., Cavanaugh, C. M. & Ohno, T. The evolutionary diversification of cyanobacteria: molecular–phylogenetic and paleontological perspectives. Proc. Natl Acad. Sci. USA 103, 5442–5447 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaplan-Levy, R. N., Hadas, O., Summers, M. L., Rücker, J. & Sukenik, A. in Dormancy and Resistance in Harsh Environments (eds Lubzens, E. et al.) 5–27 (Springer, 2010).

  • Sergeev, V. N., Knoll, A. H., Vorob’eva, N. G. & Sergeeva, N. D. Microfossils from the lower Mesoproterozoic Kaltasy Formation, East European Platform. Precambrian Res. 278, 87–107 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Sukenik, A., Rücker, J. & Maldener, I. in Cyanobacteria from Basic Science to Applications (eds Mishra, A. K. et al.) 65–77 (Academic, 2019).

  • Perez, R., Forchhammer, K., Salerno, G. & Maldener, I. Clear differences in metabolic and porphological adaptations of akinetes of two Nostocales living in different habitats. Microbiology 162, 214–223 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • López-García, P. & Moreira, D. The Syntrophy hypothesis for the origin of eukaryotes revisited. Nat. Microbiol. 5, 655–667 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Javaux, E. J. in Encyclopedia of Astrobiology (eds Gargaud, M. et al.), Ch. 538–4, 1–5 (Springer, 2021).

  • Baludikay, B. K. et al. Raman microspectroscopy, bitumen reflectance and illite crystallinity scale: comparison of different geothermometry methods on fossiliferous Proterozoic sedimentary basins (DR Congo, Mauritania and Australia). Int. J. Coal Geol. 191, 80–94 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Grey, K. A modified palynological preparation technique for the extraction of large Neoproterozoic acanthomorph acritarchs and other acid-insoluble microfossils. Western Australia Geological Survey, Record 1999/10 (1999).


  • Source link

    Total
    0
    Shares
    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Related Posts