Structural transition and migration of incoherent twin boundary in diamond

  • Sutton, A. P. & Balluffi, R. W. Interfaces in Crystalline Materials (Oxford Univ. Press, 1995).

  • Chookajorn, T., Murdoch, H. A. & Schuh, C. A. Design of stable nanocrystalline alloys. Science 337, 951–954 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Dillon, S. J., Tang, M., Carter, W. C. & Harmer, M. P. Complexion: a new concept for kinetic engineering in materials science. Acta Mater. 55, 6208–6218 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hu, J., Shi, Y. N., Sauvage, X., Sha, G. & Lu, K. Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science 355, 1292–1296 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Khalajhedayati, A., Pan, Z. & Rupert, T. J. Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility. Nat. Commun. 7, 10802 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beyerlein, I. J., Zhang, X. & Misra, A. Growth twins and deformation twins in metals. Annu. Rev. Mater. Res. 44, 329–363 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Guo, Y. et al. Twin thickness and dislocation interactions affect the incoherent-twin boundary phase in face-centered cubic metals. Cell Rep. Phys. Sci. 3, 100736 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yu, K. Y. et al. Removal of stacking-fault tetrahedra by twin boundaries in nanotwinned metals. Nat. Commun. 4, 1377 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, W., Shen, S., Liu, Y. & Han, W. Nonhysteretic superelasticity and strain hardening in a copper bicrystal with a ∑3{112} twin boundary. Acta Mater. 124, 30–36 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xu, L. et al. Structure and migration of (112) step on (111) twin boundaries in nanocrystalline copper. J. Appl. Phys. 104, 113717 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Meiners, T., Frolov, T., Rudd, R. E., Dehm, G. & Liebscher, C. H. Observations of grain-boundary phase transformations in an elemental metal. Nature 579, 375–378 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langenohl, L. et al. Dual phase patterning during a congruent grain boundary phase transition in elemental copper. Nat. Commun. 13, 3331 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Q. et al. Nanotwinned diamond with unprecedented hardness and stability. Nature 510, 250–253 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Irifune, T., Kurio, A., Sakamoto, S., Inoue, T. & Sumiya, H. Ultrahard polycrystalline diamond from graphite. Nature 421, 599–600 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, K., Lu, L. & Suresh, S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324, 349–352 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rajeshwari, K. S. et al. Grain boundary diffusion and grain boundary structures of a Ni-Cr-Fe- alloy: evidences for grain boundary phase transitions. Acta Mater. 195, 501–518 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Frazier, W. E., Rohrer, G. S. & Rollett, A. D. Abnormal grain growth in the Potts model incorporating grain boundary complexion transitions that increase the mobility of individual boundaries. Acta Mater. 96, 390–398 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Luo, J., Cheng, H., Asl, K. M., Kiely, C. J. & Harmer, M. P. The role of a bilayer interfacial phase on liquid metal embrittlement. Science 333, 1730–1733 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cantwell, P. R. et al. Grain boundary complexion transitions. Annu. Rev. Mater. Res. 50, 465–492 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wei, J. et al. Direct imaging of atomistic grain boundary migration. Nat. Mater. 20, 951–955 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z. et al. Atom-resolved imaging of ordered defect superstructures at individual grain boundaries. Nature 479, 380–383 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, J., Feng, B., Tochigi, E., Shibata, N. & Ikuhara, Y. Direct imaging of the disconnection climb mediated point defects absorption by a grain boundary. Nat. Commun. 13, 1455 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, Q., Samanta, A., Li, B., Rudd, R. E. & Frolov, T. Predicting phase behavior of grain boundaries with evolutionary search and machine learning. Nat. Commun. 9, 467 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L. et al. Tracking the sliding of grain boundaries at the atomic scale. Science 375, 1261–1265 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chu, S. et al. In situ atomic-scale observation of dislocation climb and grain boundary evolution in nanostructured metal. Nat. Commun. 13, 4151 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paxton, A. T. & Sutton, A. P. A tight-binding study of grain boundaries in silicon. Acta Metall. 37, 1693–1715 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Sawada, H. & Ichinose, H. Structure of {112} Σ3 boundary in silicon and diamond. Scr. Mater. 44, 2327–2330 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Sawada, H., Ichinose, H. & Kohyama, M. Gap states due to stretched bonds at the (112) Σ3 boundary in diamond. J. Phys. Condens. Matter 19, 026223 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Xiao, J. et al. Strengthening-softening transition in yield strength of nanotwinned Cu. Scr. Mater. 162, 372–376 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. In situ nanoindentation studies on detwinning and work hardening in nanotwinned monolithic metals. JOM (1989) 68, 127–135 (2015).

    Article 

    Google Scholar
     

  • Bufford, D., Liu, Y., Wang, J., Wang, H. & Zhang, X. In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries. Nat. Commun. 5, 4864 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pumphrey, P. H., Malis, T. F. & Gleiter, H. Rigid body translations at grain boundaries. Philos. Mag. 34, 227–233 (1976).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, J., Anderoglu, O., Hirth, J. P., Misra, A. & Zhang, X. Dislocation structures of Σ3 {112} twin boundaries in face centered cubic metals. Appl. Phys. Lett. 95, 021908 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Yang, S., Zhou, N., Zheng, H., Ong, S. P. & Luo, J. First-order interfacial transformations with a critical point: breaking the symmetry at a symmetric tilt grain boundary. Phys. Rev. Lett. 120, 085702 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Frøseth, A. G., Derlet, P. M. & Van Swygenhoven, H. Dislocations emitted from nanocrystalline grain boundaries: nucleation and splitting distance. Acta Mater. 52, 5863–5870 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Wang, J. et al. Detwinning mechanisms for growth twins in face-centered cubic metals. Acta Mater. 58, 2262–2270 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yue, Y. et al. Hierarchically structured diamond composite with exceptional toughness. Nature 582, 370–374 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J., Misra, A. & Hirth, J. P. Shear response of Σ3 {112} twin boundaries in face-centered-cubic metals. Phys. Rev. B 83, 064106 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Rajabzadeh, A., Mompiou, F., Legros, M. & Combe, N. Elementary mechanisms of shear-coupled grain boundary migration. Phys. Rev. Lett. 110, 265507 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Marquis, E. A., Hamilton, J. C., Medlin, D. L. & Léonard, F. Finite-size effects on the structure of grain boundaries. Phys. Rev. Lett. 93, 156101 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Koike, J., Parkin, D. M. & Mitchell, T. E. Displacement threshold energy for type IIa diamond. Appl. Phys. Lett. 60, 1450–1452 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cazaux, J. Correlations between ionization radiation damage and charging effects in transmission electron microscopy. Ultramicroscopy 60, 411–425 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Egerton, R. F., Li, P. & Malac, M. Radiation damage in the TEM and SEM. Micron 35, 399–409 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Regan, B. et al. Plastic deformation of single-crystal diamond nanopillars. Adv. Mater. 32, 1906458 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Blumenau, A. T. et al. Dislocations in diamond: dissociation into partials and their glide motion. Phys. Rev. B 68, 014115 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Yang, H. et al. Homogeneous and heterogeneous dislocation nucleation in diamond. Diam. Relat. Mater. 88, 110–117 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hÿtch, M. J., Snoeck, E. & Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998).

    Article 

    Google Scholar
     

  • Michalewicz, Z. & Fogel, D. B. How to Solve It: Modern Heuristics (Springer, 2004).

  • Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117, 1–19 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Los, J. H. & Fasolino, A. Intrinsic long-range bond-order potential for carbon: performance in Monte Carlo simulations of graphitization. Phys. Rev. B 68, 024107 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Xiao, J. et al. Dislocation behaviors in nanotwinned diamond. Sci. Adv. 4, eaat8195 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao, J. et al. Intersectional nanotwinned diamond-the hardest polycrystalline diamond by design. NPJ Comput. Mater. 6, 119 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pan, Y. et al. Extreme mechanical anisotropy in diamond with preferentially oriented nanotwin bundles. Proc. Natl Acad. Sci. USA 118, e2108340118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hirel, P. Atomsk: a tool for manipulating and converting atomic data files. Comput. Phys. Commun. 197, 212–219 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     


  • Source link

    Total
    0
    Shares
    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Related Posts