Boyd, P. W. & Trull, T. W. Understanding the export of biogenic particles in oceanic waters: is there consensus? Progr. Oceanogr. 72, 276–312 (2007).
Article
ADS
Google Scholar
Henson, S. A. et al. A reduced estimate of the strength of the ocean’s biological carbon pump. Geophys. Res. Lett. 38, L04606 (2011).
Article
ADS
Google Scholar
Kwon, E. Y., Primeau, F. & Sarmiento, J. L. The impact of remineralization depth on the air–sea carbon balance. Nat. Geosci. 2, 630–635 (2009).
Article
ADS
CAS
Google Scholar
Steinberg, D. K. et al. Bacterial vs. zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnol. Oceanogr. 53, 1327–1338 (2008).
Article
ADS
Google Scholar
Giering, S. L. et al. Reconciliation of the carbon budget in the ocean’s twilight zone. Nature 507, 480–483 (2014).
Article
ADS
CAS
PubMed
Google Scholar
Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. VERTEX: carbon cycling in the northeast Pacific. Deep Sea Res. I 34, 267–285 (1987).
Article
ADS
CAS
Google Scholar
Marsay, C. M. et al. Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean. Proc. Natl Acad. Sci. USA 112, 1089–1094 (2015).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Guidi, L. et al. A new look at ocean carbon remineralization for estimating deepwater sequestration. Glob. Biogeochem. Cycles 29, 1044–1059 (2015).
Article
ADS
CAS
Google Scholar
Boyd, P. W., McDonnell, A., Valdez, J., LeFevre, D. & Gall, M. P. RESPIRE: an in situ particle interceptor to conduct particle remineralization and microbial dynamics studies in the oceans’ twilight zone. Limnol. Oceanogr. Methods 13, 494–508 (2015).
Article
Google Scholar
Henson, S. A., Sanders, R. & Madsen, E. Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean. Glob. Biogeochem. Cycles 26, GB1028 (2012).
Pavia, F. J. et al. Shallow particulate organic carbon regeneration in the South Pacific Ocean. Proc. Natl Acad. Sci. USA 116, 9753–9758 (2019).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Lutz, M. J., Caldeira, K., Dunbar, R. B. & Behrenfeld, M. J. Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. J. Geophys. Res. Oceans 112, C10011 (2007).
Weber, T., Cram, J. A., Leung, S. W., DeVries, T. & Deutsch, C. Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency. Proc. Natl Acad. Sci. USA 113, 8606–8611 (2016).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Cram, J. A. et al. The role of particle size, ballast, temperature, and oxygen in the sinking flux to the deep sea. Glob. Biogeochem. Cycles 32, 858–876 (2018).
Article
ADS
CAS
Google Scholar
Buesseler, K. O. & Boyd, P. W. Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean. Limnol. Oceanogr. 54, 1210–1232 (2009).
Article
ADS
CAS
Google Scholar
Omand, M. M., Govindarajan, R., He, J. & Mahadevan, A. Sinking flux of particulate organic matter in the oceans: sensitivity to particle characteristics. Sci. Rep. 10, 5582 (2020).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Nguyen, T. T. et al. Microbes contribute to setting the ocean carbon flux by altering the fate of sinking particulates. Nat. Commun. 13, 1657 (2022).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Henson, S. A. et al. Uncertain response of ocean biological carbon export in a changing world. Nat. Geosci. 15, 248–254 (2022).
Article
ADS
CAS
Google Scholar
Leu, A. O., Eppley, J. M., Burger, A. & DeLong, E. F. Diverse genomic traits differentiate sinking-particle-associated versus free-living microbes throughout the oligotrophic open ocean water column. mBio 13, e01569-22 (2022).
Bressac, M. et al. Resupply of mesopelagic dissolved iron controlled by particulate iron composition. Nat. Geosci. 12, 995–1000 (2019).
Article
ADS
CAS
Google Scholar
Collins, J. R. et al. The multiple fates of sinking particles in the North Atlantic Ocean. Glob. Biogeochem. Cycles 29, 1471–1494 (2015).
Article
ADS
CAS
Google Scholar
Belcher, A. et al. Depth-resolved particle-associated microbial respiration in the northeast Atlantic. Biogeosciences 13, 4927–4943 (2016).
Article
ADS
Google Scholar
Karl, D. M., Knauer, G. A. & Martin, J. H. Downward flux of particulate organic matter in the ocean: a particle decomposition paradox. Nature 332, 438–441 (1988).
Article
ADS
Google Scholar
Herraiz-Borreguero, L. & Rintoul, S. R. Regional circulation and its impact on upper ocean variability south of Tasmania. Deep Sea Res. II 58, 2071–2081 (2011).
Article
ADS
CAS
Google Scholar
Iversen, M. H. Carbon export in the ocean: a biologist’s perspective. Ann. Rev. Mar. Sci. 15, 357–381 (2023).
Article
PubMed
Google Scholar
Stukel, M. R., Ohman, M. D., Kelly, T. B. & Biard, T. The roles of suspension-feeding and flux-feeding zooplankton as gatekeepers of particle flux into the mesopelagic ocean in the Northeast Pacific. Front. Mar. Sci. 6, 397 (2019).
Article
Google Scholar
Goldblatt, R. H., Mackas, D. L. & Lewis, A. G. Mesozooplankton community characteristics in the NE subarctic Pacific. Deep Sea Res. II 46, 2619–2644 (1999).
Article
ADS
Google Scholar
Steinberg, D. K., Cope, J. S., Wilson, S. E. & Kobari, T. A comparison of mesopelagic mesozooplankton community structure in the subtropical and subarctic North Pacific Ocean. Deep Sea Res. II 55, 1615–1635 (2008).
Article
ADS
Google Scholar
Burd, A. B. et al. Assessing the apparent imbalance between geochemical and biochemical indicators of meso-and bathypelagic biological activity: what the @ $♯! is wrong with present calculations of carbon budgets? Deep Sea Res. II 57, 1557–1571 (2010).
Article
ADS
CAS
Google Scholar
Herndl, G. J. & Reinthaler, T. Microbial control of the dark end of the biological pump. Nat. Geosci. 6, 718–724 (2013).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Brewer, P. G. & Peltzer, E. T. Depth perception: the need to report ocean biogeochemical rates as functions of temperature, not depth. Phil. Trans. R. Soc. A 375, 20160319 (2017).
Article
ADS
PubMed
PubMed Central
Google Scholar
Kong, L. F. et al. Illuminating key microbial players and metabolic processes involved in the remineralization of particulate organic carbon in the ocean’s twilight zone by metaproteomics. Appl. Environ. Microbiol. 87, e00986–21 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Vazquez-Dominguez, E., Vaque, D. & Gasol, J. M. Ocean warming enhances respiration and carbon demand of coastal microbial plankton. Glob. Change Biol. 13, 1327–1334 (2007).
Article
ADS
Google Scholar
Iversen, M. H. & Ploug, H. Temperature effects on carbon-specific respiration rate and sinking velocity of diatom aggregates—potential implications for deep ocean export processes. Biogeosciences 10, 4073–4085 (2013).
Article
ADS
Google Scholar
Cavan, E. L. & Boyd, P. W. Effect of anthropogenic warming on microbial respiration and particulate organic carbon export rates in the sub-Antarctic Southern Ocean. Aquat. Microb. Ecol. 82, 111–127 (2018).
Article
Google Scholar
Apple, J. K., Del Giorgio, P. A. & Kemp, W. M. Temperature regulation of bacterial production, respiration, and growth efficiency in a temperate salt-marsh estuary. Aquat. Microb. Ecol. 43, 243–254 (2006).
Article
Google Scholar
Yung, C. M. et al. Thermally adaptive tradeoffs in closely related marine bacterial strains. Environ. Microbiol. 17, 2421–2429 (2015).
Article
PubMed
Google Scholar
Boscolo-Galazzo, F., Crichton, K. A., Barker, S. & Pearson, P. N. Temperature dependency of metabolic rates in the upper ocean: a positive feedback to global climate change? Glob. Planet. Change 170, 201–212 (2018).
Article
ADS
Google Scholar
Boscolo-Galazzo, F. et al. Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science 371, 1148–1152 (2021).
Article
ADS
CAS
PubMed
Google Scholar
McDonnell, A. M. P., Boyd, P. W. & Buesseler, K. O. Effects of sinking velocities and microbial respiration rates on the attenuation of particulate carbon fluxes through the mesopelagic zone. Glob. Biogeochem. Cycles 29, 175–193 (2015).
Article
ADS
CAS
Google Scholar
Boyd, P. W. & Kennedy, F. Microbes in a sea of sinking particles. Nat. Microbiol. 6, 1479–1480 (2021).
Article
CAS
PubMed
Google Scholar
Pomeroy, L. R. & Wiebe, W. J. Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquat. Microb. Ecol. 23, 187–204 (2001).
Article
Google Scholar
López-Urrutia, Á. & Morán, X. A. G. Resource limitation of bacterial production distorts the temperature dependence of oceanic carbon cycling. Ecology 88, 817–822 (2007).
Article
PubMed
Google Scholar
Williams, P. J., le, B. & Robertson, J. E. Overall plankton oxygen and carbon dioxide metabolism: the problem of reconciling observations and calculations of photosynthetic quotients. J. Plankton Res. 13, 153–169 (1991).
Google Scholar
Tanioka, T. & Matsumoto, K. Stability of marine organic matter respiration stoichiometry. Geophys. Res. Lett. 47, e2019GL085564 (2020).
Article
ADS
CAS
Google Scholar
del Giorgio, P. A. & Williams, P. J. (eds) Respiration in Aquatic Ecosystems (Oxford Univ. Press, 2005).
Fierer, N., Craine, J. M., McLauchlan, K. & Schimel, J. P. Litter quality and the temperature sensitivity of decomposition. Ecology 86, 320–326 (2005).
Article
Google Scholar
Craine, J. M., Fierer, N. & McLauchlan, K. K. Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nat. Geosci. 3, 854–857 (2010).
Article
ADS
CAS
Google Scholar
Pold, G. et al. Carbon use efficiency and its temperature sensitivity covary in soil bacteria. mBio 11, e02293–19 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith, T. P., Clegg, T., Bell, T. & Pawar, S. Systematic variation in the temperature dependence of bacterial carbon use efficiency. Ecol. Lett. 24, 2123–2133 (2021).
Article
PubMed
Google Scholar
DeLong, E. F. et al. Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311, 496–503 (2006).
Article
ADS
CAS
PubMed
Google Scholar
Baumas, C. M. et al. Mesopelagic microbial carbon production correlates with diversity across different marine particle fractions. ISME J. 15, 1695–1708 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Datta, M. S., Sliwerska, E., Gore, J., Polz, M. F. & Cordero, O. X. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat. Commun. 7, 11965 (2016).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Enke, T. N., Leventhal, G. E., Metzger, M., Saavedra, J. T. & Cordero, O. X. Microscale ecology regulates particulate organic matter turnover in model marine microbial communities. Nat. Commun. 9, 2743 (2018).
Article
ADS
PubMed
PubMed Central
Google Scholar
Briggs, N., Dall’Olmo, G. & Claustre, H. Major role of particle fragmentation in regulating biological sequestration of CO2 by the oceans. Science 367, 791–793 (2020).
Article
ADS
CAS
PubMed
Google Scholar
Poulsen, L. K., Moldrup, M., Berge, T. & Hansen, P. J. Feeding on copepod fecal pellets: a new trophic role of dinoflagellates as detritivores. Mar. Ecol. Prog. Ser. 441, 65–78 (2011).
Article
ADS
Google Scholar
Mayor, D. J., Sanders, R., Giering, S. L. & Anderson, T. R. Microbial gardening in the ocean’s twilight zone: detritivorous metazoans benefit from fragmenting, rather than ingesting, sinking detritus. Bioessays 36, 1132–1137 (2014).
Article
PubMed
PubMed Central
Google Scholar
Bindoff, N. L. et al. Changing ocean, marine ecosystems, and dependent communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 447–587 (Cambridge Univ. Press, 2019).
Cooley, S. et al. Oceans and coastal ecosystems and their services. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pörtner, H.-O. et al.) 379–550 (Cambridge Univ. Press, 2022).
Stemmann, L., Jackson, G. A. & Gorsky, G. A vertical model of particle size distributions and fluxes in the midwater column that includes biological and physical processes—Part II: application to a three year survey in the NW Mediterranean Sea. Deep Sea Res. I 51, 885–908 (2004).
Article
CAS
Google Scholar
Alcolombri, U. et al. Sinking enhances the degradation of organic particles by marine bacteria. Nat. Geosci. 14, 775–780 (2021).
Article
ADS
CAS
Google Scholar
Sanders, R. J. et al. Controls over Ocean Mesopelagic Interior Carbon Storage (COMICS): fieldwork, synthesis, and modeling efforts. Front. Mar. Sci. 3, 136 (2016).
Article
Google Scholar
Korb, R. E. et al. Regional and seasonal differences in microplankton biomass, productivity, and structure across the Scotia Sea: implications for the export of biogenic carbon. Deep Sea Res. II 59, 67–77 (2012).
Article
ADS
Google Scholar
Rembauville, M., Manno, C., Tarling, G. A., Blain, S. & Salter, I. Strong contribution of diatom resting spores to deep-sea carbon transfer in naturally iron-fertilized waters downstream of South Georgia. Deep Sea Res. I 115, 22–35 (2016).
Article
CAS
Google Scholar
Shannon, L. V. & Nelson, G. in The South Atlantic Past and Present Circulation (eds Wefer, G. W. H. et al.) 163–210 (Springer, 1996).
Lovecchio, E., Henson, S., Carvalho, F. & Briggs, N. Oxygen variability in the offshore northern Benguela upwelling system from glider data. J. Geophys. Res. Oceans 127, e2022JC019063 (2022).
Article
ADS
PubMed
PubMed Central
Google Scholar
Trull, T. W. et al. Autonomous multi-trophic observations of productivity and export at the Australian Southern Ocean Time Series (SOTS) reveal sequential mechanisms of physical–biological coupling. Front. Mar. Sci. 6, 525 (2019).
Article
Google Scholar
Wynn-Edwards, et al. Particle fluxes at the Australian Southern Ocean Time Series (SOTS) achieve organic carbon sequestration at rates close to the global median, are dominated by biogenic carbonates, and show no temporal trends over 20-years. Front. Earth Sci. 8, 329 (2020).
Article
ADS
Google Scholar
Eriksen, R. et al. Seasonal succession of phytoplankton community structure from autonomous sampling at the Australian Southern Ocean Time Series (SOTS) observatory. Mar. Ecol. Progr. Ser. 589, 13–31 (2018).
Article
ADS
CAS
Google Scholar
Siegel, D. et al. An operational overview of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) Northeast Pacific field deployment. Elem. Sci. Anth. 9, 00107 (2021).
Article
Google Scholar
Estapa, M. et al. Biogenic sinking particle fluxes and sediment trap collection efficiency at Ocean Station Papa. Elementa 9, 00122 (2021).
Google Scholar
Boyd, P. & Harrison, P. J. Phytoplankton dynamics in the NE subarctic Pacific. Deep Sea Res. II 46, 2405–2432 (1999).
Article
ADS
Google Scholar
Buesseler, K. O. et al. High-resolution spatial and temporal measurements of particulate organic carbon flux using thorium-234 in the northeast Pacific Ocean during the EXport Processes in the Ocean from RemoTe Sensing field campaign. Elementa 8, 030 (2020).
Guieu, C. et al. Introduction: Process studies at the air–sea interface after atmospheric deposition in the Mediterranean Sea—objectives and strategy of the PEACETIME oceanographic campaign (May–June 2017). Biogeosciences 17, 5563–5585 (2020).
Article
ADS
CAS
Google Scholar
Guerzoni, S. et al. The role of atmospheric deposition in the biogeochemistry of the Mediterranean Sea. Progr. Oceanogr. 44, 147–190 (1999).
Article
ADS
Google Scholar
Claustre, H., Sciandra, A. & Vaulot, D. Introduction to the special section bio-optical and biogeochemical conditions in the south east Pacific in late 2004: the BIOSOPE program. Biogeosciences 5, 679–691 (2008).
Article
ADS
CAS
Google Scholar
Bonnet, S. et al. Natural iron fertilization by shallow hydrothermal sources fuels diazotroph blooms in the ocean. Science 380, 812–817 (2023).
Article
ADS
CAS
PubMed
Google Scholar
Lampitt, R. S., Wishner, K. F., Turley, C. M. & Angel, M. V. Marine snow studies in the Northeast Atlantic Ocean: distribution, composition and role as a food source for migrating plankton. Mar. Biol. 116, 689–702 (1993).
Article
Google Scholar
Kiørboe, T. Marine snow microbial communities: scaling of abundances with aggregate size. Aquat. Microb. Ecol. 33, 67–75 (2003).
Article
Google Scholar
Owens, S. A., Pike, S. & Buesseler, K. O. Thorium-234 as a tracer of particle dynamics and upper ocean export in the Atlantic Ocean. Deep Sea Res. II 116, 42–59 (2015).
Article
CAS
Google Scholar
Lamborg, C. H. et al. The flux of bio-and lithogenic material associated with sinking particles in the mesopelagic “twilight zone” of the northwest and North Central Pacific Ocean. Deep Sea Res. II 55, 1540–1563 (2008).
Article
ADS
Google Scholar
Thierry, V. et al. Processing Argo Oxygen Data at the DAC Level Version 2.3.1 (2018).
Berggren, M., Lapierre, J. F. & Del Giorgio, P. A. Magnitude and regulation of bacterioplankton respiratory quotient across freshwater environmental gradients. ISME J. 6, 984–993 (2012).
Article
CAS
PubMed
Google Scholar
Robinson, C. Microbial respiration, the engine of ocean deoxygenation. Front. Mar. Sci. 5, 533 (2019).
Article
Google Scholar
Anderson, L. A. & Sarmiento, J. L. Redfield ratios of remineralization determined by nutrient data analysis. Glob. Biogeochem. Cycles 8, 65–80 (1994).
Article
ADS
CAS
Google Scholar
Lauvset, S. et al. GLODAPv2.2022: the latest version of the global interior ocean biogeochemical data product. Earth Syst. Sci. Data 14, 5543–5572 (2022).
Karl, D. M. & Tilbrook, B. D. Production and transport of methane in oceanic particulate organic matter. Nature 368, 732–734 (1994).
Article
ADS
CAS
Google Scholar
Boyd, P. W. et al. Transformations of biogenic particulates from the pelagic to the deep ocean realm. Deep Sea Res. II 46, 2761–2792 (1999).
Article
ADS
CAS
Google Scholar
Mackinson, B. L., Moran, S. B., Lomas, M. W., Stewart, G. M. & Kelly, R. P. Estimates of micro-, nano-, and picoplankton contributions to particle export in the northeast Pacific. Biogeosciences 12, 3429–3446 (2015).
Article
ADS
Google Scholar
Ramondenc, S. et al. An initial carbon export assessment in the Mediterranean Sea based on drifting sediment traps and the Underwater Vision Profiler data sets. Deep Sea Res. I 117, 107–119 (2016).
Article
CAS
Google Scholar
Bressac, M. et al. Subsurface iron accumulation and rapid aluminum removal in the Mediterranean following African dust deposition. Biogeosciences 18, 6435–6453 (2021).
Article
ADS
CAS
Google Scholar
Baker, C. A., Estapa, M. L., Iversen, M., Lampitt, R. & Buesseler, K. Are all sediment traps created equal? An intercomparison study of carbon export methodologies at the PAP-SO site. Progr. Oceanogr. 184, 102317 (2020).
Article
Google Scholar
Cael, B. B. & Bisson, K. Particle flux parameterizations: quantitative and mechanistic similarities and differences. Front. Mar. Sci. 5, 395 (2018).
Article
Google Scholar
Berelson, W. M. Particle settling rates increase with depth in the ocean. Deep Sea Res. II 49, 237–251 (2001).
Article
ADS
Google Scholar
Villa‐Alfageme, M. et al. Geographical, seasonal, and depth variation in sinking particle speeds in the North Atlantic. Geophys. Res. Lett. 43, 8609–8616 (2016).
Article
ADS
Google Scholar
Boyd, P. W., Ellwood, M. J., Tagliabue, A. & Twining, B. S. Biotic and abiotic retention, recycling and remineralization of metals in the ocean. Nat. Geosci. 10, 167–173 (2017).
Article
ADS
CAS
Google Scholar
Kamalanathan, M. et al. Exoenzymes as a signature of microbial response to marine environmental conditions. mSystems 5, e00290–20 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Cezairliyan, B. & Ausubel, F. M. Investment in secreted enzymes during nutrient-limited growth is utility dependent. Proc. Natl Acad. Sci. USA 114, E7796–E7802 (2017).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Mahmoudi, N. et al. Illuminating microbial species‐specific effects on organic matter remineralization in marine sediments. Environ. Microbiol. 22, 1734–1747 (2020).
Article
CAS
PubMed
Google Scholar
Smith, E. M. Coherence of microbial respiration rate and cell-specific bacterial activity in a coastal planktonic community. Aquat. Microb. Ecol. 16, 27–35 (1998).
Article
Google Scholar
Cabré, A., Shields, D., Marinov, I. & Kostadinov, T. S. Phenology of size-partitioned phytoplankton carbon-biomass from ocean color remote sensing and CMIP5 models. Front. Mar. Sci. 3, 39 (2016).
Article
Google Scholar