Tag: Marine chemistry

  • Arrigo, K. R. Marine microorganisms and global nutrient cycles. Nature 437, 349–355 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Browning, T. J. & Moore, C. M. Global analysis of ocean phytoplankton nutrient limitation reveals high prevalence of co-limitation. Nat. Commun. 14, 5014 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buesseler, K. O. et al. Metrics that matter for assessing the ocean biological carbon pump. Proc. Natl Acad. Sci. USA 117, 9679–9687 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buesseler, K. O. et al. Revisiting carbon flux through the ocean’s twilight zone. Science 316, 567–570 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Baltar, F. et al. Specific effects of trace metals on marine heterotrophic microbial activity and diversity: key role of iron and zinc and hydrocarbon-degrading bacteria. Front. Microbiol. 9, 03190 (2018).

    Article 

    Google Scholar
     

  • Bundy, R. M. et al. Distinct siderophores contribute to iron cycling in the mesopelagic at station ALOHA. Front. Mar. Sci. 5, 61 (2018).

    Article 

    Google Scholar
     

  • Mazzotta, M. G., McIlvin, M. R. & Saito, M. A. Characterization of the Fe metalloproteome of a ubiquitous marine heterotroph, Pseudoalteromonas (BB2-AT2): multiple bacterioferritin copies enable significant Fe storage. Metallomics 12, 654–667 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bagg, A. & Neilands, J. B. Molecular mechanism of regulation of siderophore-mediated iron assimilation. Microbiol. Rev. 51, 509–518 (1987).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bressac, M. et al. Resupply of mesopelagic dissolved iron controlled by particulate iron composition. Nat. Geosci. 12, 995–1000 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Twining, B. S. et al. Differential remineralization of major and trace elements in sinking diatoms. Limnol. Oceanogr. 59, 689–704 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bruland, K. W., Orians, K. J. & Cowen, J. P. Reactive trace metals in the stratified central North Pacific. Geochim. Cosmochim. Acta 58, 3171–3182 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Boyd, P. W., Ellwood, M. J., Tagliabue, A. & Twining, B. S. Biotic and abiotic retention, recycling and remineralization of metals in the ocean. Nat. Geosci. 10, 167–173 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schlitzer, R. et al. The GEOTRACES Intermediate Data Product 2017. Chem. Geol. 493, 210–223 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tortell, P. D., Maldonado, M. T. & Price, N. M. The role of heterotrophic bacteria in iron-limited ocean ecosystems. Nature 383, 330–332 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fourquez, M. et al. Effects of iron limitation on growth and carbon metabolism in oceanic and coastal heterotrophic bacteria. Limnol. Oceanogr. 59, 349–360 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • van den Berg, C. M. Evidence for organic complexation of iron in seawater. Mar. Chem. 50, 139–157 (1995).

    Article 

    Google Scholar
     

  • Rue, E. L. & Bruland, K. W. Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method. Mar. Chem. 50, 117–138 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Gledhill, M. & Buck, K. N. The organic complexation of iron in the marine environment: a review. Front. Microbiol. 3, 69 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hassler, C. S., van den Berg, C. M. G. & Boyd, P. W. Toward a regional classification to provide a more inclusive examination of the ocean biogeochemistry of iron-binding ligands. Front. Mar. Sci. 4, 19 (2017).

    Article 

    Google Scholar
     

  • Sexton, D. J. & Schuster, M. Nutrient limitation determines the fitness of cheaters in bacterial siderophore cooperation. Nat. Commun. 8, 230 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sijerčić, A. & Price, N. M. Hydroxamate siderophore secretion by Pseudoalteromonas haloplanktis during steady-state and transient growth under iron limitation. Mar. Ecol. Prog. Ser. 531, 105–120 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Gauglitz, J. M. et al. Dynamic proteome response of a marine Vibrio to a gradient of iron and ferrioxamine bioavailability. Mar. Chem. 229, 103913 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Park, J. et al. Siderophore production and utilization by marine bacteria in the North Pacific Ocean. Limnol. Oceanogr. 68, 1636–1653 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Martin, J. H. et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371, 123–129 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Martinez, J. S. et al. Structure and membrane affinity of a suite of amphiphilic siderophores produced by a marine bacterium. Proc. Natl Acad. Sci. USA 100, 3754–3759 (2003).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martinez, J. S. et al. Self-assembling amphiphilic siderophores from marine bacteria. Science 287, 1245–1247 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, G., Martinez, J. S., Groves, J. T. & Butler, A. Membrane affinity of the amphiphilic marinobactin siderophores. J. Am. Chem. Soc. 124, 13408–13415 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kramer, J., Özkaya, Ö. & Kümmerli, R. Bacterial siderophores in community and host interactions. Nat. Rev. Microbiol. 18, 152–163 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saha, R., Saha, N., Donofrio, R. S. & Bestervelt, L. L. Microbial siderophores: a mini review. J. Basic Microbiol. 53, 303–317 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Wilson, B. R., Bogdan, A. R., Miyazawa, M., Hashimoto, K. & Tsuji, Y. Siderophores in iron metabolism: from mechanism to therapy potential. Trends Mol. Med. 22, 1077–1090 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schalk, I. J. & Guillon, L. Fate of ferrisiderophores after import across bacterial outer membranes: different iron release strategies are observed in the cytoplasm or periplasm depending on the siderophore pathways. Amino Acids 44, 1267–1277 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greenwald, J. et al. Real time fluorescent resonance energy transfer visualization of ferric pyoverdine uptake in Pseudomonas aeruginosa: a role for ferrous iron. J. Biol. Chem. 282, 2987–2995 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karl, D. M. & Church, M. J. Microbial oceanography and the Hawaii Ocean Time-series programme. Nat. Rev. Microbiol. 12, 699–713 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, X. & Boyer, G. L. Siderophore-mediated aluminum uptake by Bacillus megaterium ATCC 19213. Appl. Environ. Microbiol. 62, 4044–4048 (1996).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giering, S. L. C. et al. Reconciliation of the carbon budget in the ocean’s twilight zone. Nature 507, 480–483 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Steinberg, D. K. et al. Bacterial vs. zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnol. Oceanogr. 53, 1327–1338 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Pakulski, J. D. et al. Iron stimulation of Antarctic bacteria. Nature 383, 133–134 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Granger, J. & Price, N. M. The importance of siderophores in iron nutrition of heterotrophic marine bacteria. Limnol. Oceanogr. 44, 541–555 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Church, M. J., Hutchins, D. A. & Ducklow, H. W. Limitation of bacterial growth by dissolved organic matter and iron in the Southern Ocean. Appl. Environ. Microbiol. 66, 455–466 (2000).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mendonca, C. M. et al. Hierarchical routing in carbon metabolism favors iron-scavenging strategy in iron-deficient soil Pseudomonas species. Proc. Natl Acad. Sci. USA 117, 32358–32369 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kirchman, D. L., Hoffman, K. A., Weaver, R. & Hutchins, D. A. Regulation of growth and energetics of a marine bacterium by nitrogen source and iron availability. Mar. Ecol. Prog. Ser. 250, 291–296 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Beier, S. et al. The transcriptional regulation of the glyoxylate cycle in SAR11 in response to iron fertilization in the Southern Ocean. Environ. Microbiol. Rep. 7, 427–434 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kwon, E. Y., Primeau, F. & Sarmeento, J. L. The impact of remineralization depth on the air–sea carbon balance. Nat. Geosci. 2, 630–635 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fitzsimmons, J. N. et al. Daily to decadal variability of size-fractionated iron and iron-binding ligands at the Hawaii Ocean Time-series Station ALOHA. Geochim. Cosmochim. Acta 171, 303–324 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Conway, T. M., Rosenberg, A. D., Adkins, J. F. & John, S. G. A new method for precise determination of iron, zinc and cadmium stable isotope ratios in seawater by double-spike mass spectrometry. Anal. Chim. Acta 793, 44–52 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sieber, M. et al. Isotopic fingerprinting of biogeochemical processes and iron sources in the iron-limited surface Southern Ocean. Earth Planet. Sci. Lett. 567, 116967 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Middag, R. et al. Intercomparison of dissolved trace elements at the Bermuda Atlantic Time Series station. Mar. Chem. 177, 476–489 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ellwood, M. J. et al. Distinct iron cycling in a Southern Ocean eddy. Nat. Commun. 11, 825 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. et al. Element-selective targeting of nutrient metabolites in environmental samples by inductively coupled plasma mass spectrometry and electrospray ionization mass spectrometry. Front. Mar. Sci. 8, 630494 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Boiteau, R. M., Fitzsimmons, J. N., Repeta, D. J. & Boyle, E. A. Detection of iron ligands in seawater and marine cyanobacteria cultures by high-performance liquid chromatography–inductively coupled plasma-mass spectrometry. Anal. Chem. 85, 4357–4362 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boiteau, R. M. & Repeta, D. J. An extended siderophore suite from Synechococcus sp. PCC 7002 revealed by LC-ICPMS-ESIMS. Metallomics 7, 877–884 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chambers, M. C. et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918–920 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baars, O., Morel, F. M. & Perlman, D. H. ChelomEx: isotope-assisted discovery of metal chelates in complex media using high-resolution LC-MS. Anal. Chem. 86, 11298–11305 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boiteau, R. M. Molecular Determination of Marine Iron Ligands by Mass Spectrometry. Thesis, Massachusetts Institute of Technology/Woods Hole Oceanographic Institution (2016).

  • Vraspir, J. M., Holt, P. D. & Butler, A. Identification of new members within suites of amphiphilic marine siderophores. BioMetals 24, 85–92 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boiteau, R. M. et al. Siderophore-based microbial adaptations to iron scarcity across the eastern Pacific Ocean. Proc. Natl Acad. Sci. 113, 14237–14242 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kem, M. P. & Butler, A. Acyl peptidic siderophores: structures, biosyntheses and post-assembly modifications. BioMetals 28, 445–459 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • GEOTRACES Intermediate Data Product Group. The GEOTRACES Intermediate Data Product 2021 version 2 (IDP2021v2). NERC EDS British Oceanographic Data Centre NOC. https://doi.org/10.5285/ff46f034-f47c-05f9-e053-6c86abc0dc7e (2023).

  • Xiang, Y. & Lam, P. J. Size-fractionated compositions of marine suspended particles in the Western Arctic Ocean: lateral and vertical sources. J. Geophys. Res. Oceans 125, e2020JC016144 (2020).

    Article 
    ADS 

    Google Scholar
     

[ad_2]

Source link

  • Decoding drivers of carbon flux attenuation in the oceanic biological pump

    [ad_1]

  • Boyd, P. W. & Trull, T. W. Understanding the export of biogenic particles in oceanic waters: is there consensus? Progr. Oceanogr. 72, 276–312 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Henson, S. A. et al. A reduced estimate of the strength of the ocean’s biological carbon pump. Geophys. Res. Lett. 38, L04606 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Kwon, E. Y., Primeau, F. & Sarmiento, J. L. The impact of remineralization depth on the air–sea carbon balance. Nat. Geosci. 2, 630–635 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Steinberg, D. K. et al. Bacterial vs. zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnol. Oceanogr. 53, 1327–1338 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Giering, S. L. et al. Reconciliation of the carbon budget in the ocean’s twilight zone. Nature 507, 480–483 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. VERTEX: carbon cycling in the northeast Pacific. Deep Sea Res. I 34, 267–285 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Marsay, C. M. et al. Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean. Proc. Natl Acad. Sci. USA 112, 1089–1094 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guidi, L. et al. A new look at ocean carbon remineralization for estimating deepwater sequestration. Glob. Biogeochem. Cycles 29, 1044–1059 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Boyd, P. W., McDonnell, A., Valdez, J., LeFevre, D. & Gall, M. P. RESPIRE: an in situ particle interceptor to conduct particle remineralization and microbial dynamics studies in the oceans’ twilight zone. Limnol. Oceanogr. Methods 13, 494–508 (2015).

    Article 

    Google Scholar
     

  • Henson, S. A., Sanders, R. & Madsen, E. Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean. Glob. Biogeochem. Cycles 26, GB1028 (2012).

  • Pavia, F. J. et al. Shallow particulate organic carbon regeneration in the South Pacific Ocean. Proc. Natl Acad. Sci. USA 116, 9753–9758 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lutz, M. J., Caldeira, K., Dunbar, R. B. & Behrenfeld, M. J. Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. J. Geophys. Res. Oceans 112, C10011 (2007).

  • Weber, T., Cram, J. A., Leung, S. W., DeVries, T. & Deutsch, C. Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency. Proc. Natl Acad. Sci. USA 113, 8606–8611 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cram, J. A. et al. The role of particle size, ballast, temperature, and oxygen in the sinking flux to the deep sea. Glob. Biogeochem. Cycles 32, 858–876 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Buesseler, K. O. & Boyd, P. W. Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean. Limnol. Oceanogr. 54, 1210–1232 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Omand, M. M., Govindarajan, R., He, J. & Mahadevan, A. Sinking flux of particulate organic matter in the oceans: sensitivity to particle characteristics. Sci. Rep. 10, 5582 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, T. T. et al. Microbes contribute to setting the ocean carbon flux by altering the fate of sinking particulates. Nat. Commun. 13, 1657 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henson, S. A. et al. Uncertain response of ocean biological carbon export in a changing world. Nat. Geosci. 15, 248–254 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Leu, A. O., Eppley, J. M., Burger, A. & DeLong, E. F. Diverse genomic traits differentiate sinking-particle-associated versus free-living microbes throughout the oligotrophic open ocean water column. mBio 13, e01569-22 (2022).

  • Bressac, M. et al. Resupply of mesopelagic dissolved iron controlled by particulate iron composition. Nat. Geosci. 12, 995–1000 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Collins, J. R. et al. The multiple fates of sinking particles in the North Atlantic Ocean. Glob. Biogeochem. Cycles 29, 1471–1494 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Belcher, A. et al. Depth-resolved particle-associated microbial respiration in the northeast Atlantic. Biogeosciences 13, 4927–4943 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Karl, D. M., Knauer, G. A. & Martin, J. H. Downward flux of particulate organic matter in the ocean: a particle decomposition paradox. Nature 332, 438–441 (1988).

    Article 
    ADS 

    Google Scholar
     

  • Herraiz-Borreguero, L. & Rintoul, S. R. Regional circulation and its impact on upper ocean variability south of Tasmania. Deep Sea Res. II 58, 2071–2081 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Iversen, M. H. Carbon export in the ocean: a biologist’s perspective. Ann. Rev. Mar. Sci. 15, 357–381 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Stukel, M. R., Ohman, M. D., Kelly, T. B. & Biard, T. The roles of suspension-feeding and flux-feeding zooplankton as gatekeepers of particle flux into the mesopelagic ocean in the Northeast Pacific. Front. Mar. Sci. 6, 397 (2019).

    Article 

    Google Scholar
     

  • Goldblatt, R. H., Mackas, D. L. & Lewis, A. G. Mesozooplankton community characteristics in the NE subarctic Pacific. Deep Sea Res. II 46, 2619–2644 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Steinberg, D. K., Cope, J. S., Wilson, S. E. & Kobari, T. A comparison of mesopelagic mesozooplankton community structure in the subtropical and subarctic North Pacific Ocean. Deep Sea Res. II 55, 1615–1635 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Burd, A. B. et al. Assessing the apparent imbalance between geochemical and biochemical indicators of meso-and bathypelagic biological activity: what the @ $♯! is wrong with present calculations of carbon budgets? Deep Sea Res. II 57, 1557–1571 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Herndl, G. J. & Reinthaler, T. Microbial control of the dark end of the biological pump. Nat. Geosci. 6, 718–724 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brewer, P. G. & Peltzer, E. T. Depth perception: the need to report ocean biogeochemical rates as functions of temperature, not depth. Phil. Trans. R. Soc. A 375, 20160319 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong, L. F. et al. Illuminating key microbial players and metabolic processes involved in the remineralization of particulate organic carbon in the ocean’s twilight zone by metaproteomics. Appl. Environ. Microbiol. 87, e00986–21 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vazquez-Dominguez, E., Vaque, D. & Gasol, J. M. Ocean warming enhances respiration and carbon demand of coastal microbial plankton. Glob. Change Biol. 13, 1327–1334 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Iversen, M. H. & Ploug, H. Temperature effects on carbon-specific respiration rate and sinking velocity of diatom aggregates—potential implications for deep ocean export processes. Biogeosciences 10, 4073–4085 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Cavan, E. L. & Boyd, P. W. Effect of anthropogenic warming on microbial respiration and particulate organic carbon export rates in the sub-Antarctic Southern Ocean. Aquat. Microb. Ecol. 82, 111–127 (2018).

    Article 

    Google Scholar
     

  • Apple, J. K., Del Giorgio, P. A. & Kemp, W. M. Temperature regulation of bacterial production, respiration, and growth efficiency in a temperate salt-marsh estuary. Aquat. Microb. Ecol. 43, 243–254 (2006).

    Article 

    Google Scholar
     

  • Yung, C. M. et al. Thermally adaptive tradeoffs in closely related marine bacterial strains. Environ. Microbiol. 17, 2421–2429 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Boscolo-Galazzo, F., Crichton, K. A., Barker, S. & Pearson, P. N. Temperature dependency of metabolic rates in the upper ocean: a positive feedback to global climate change? Glob. Planet. Change 170, 201–212 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Boscolo-Galazzo, F. et al. Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science 371, 1148–1152 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • McDonnell, A. M. P., Boyd, P. W. & Buesseler, K. O. Effects of sinking velocities and microbial respiration rates on the attenuation of particulate carbon fluxes through the mesopelagic zone. Glob. Biogeochem. Cycles 29, 175–193 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Boyd, P. W. & Kennedy, F. Microbes in a sea of sinking particles. Nat. Microbiol. 6, 1479–1480 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pomeroy, L. R. & Wiebe, W. J. Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquat. Microb. Ecol. 23, 187–204 (2001).

    Article 

    Google Scholar
     

  • López-Urrutia, Á. & Morán, X. A. G. Resource limitation of bacterial production distorts the temperature dependence of oceanic carbon cycling. Ecology 88, 817–822 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Williams, P. J., le, B. & Robertson, J. E. Overall plankton oxygen and carbon dioxide metabolism: the problem of reconciling observations and calculations of photosynthetic quotients. J. Plankton Res. 13, 153–169 (1991).


    Google Scholar
     

  • Tanioka, T. & Matsumoto, K. Stability of marine organic matter respiration stoichiometry. Geophys. Res. Lett. 47, e2019GL085564 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • del Giorgio, P. A. & Williams, P. J. (eds) Respiration in Aquatic Ecosystems (Oxford Univ. Press, 2005).

  • Fierer, N., Craine, J. M., McLauchlan, K. & Schimel, J. P. Litter quality and the temperature sensitivity of decomposition. Ecology 86, 320–326 (2005).

    Article 

    Google Scholar
     

  • Craine, J. M., Fierer, N. & McLauchlan, K. K. Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nat. Geosci. 3, 854–857 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pold, G. et al. Carbon use efficiency and its temperature sensitivity covary in soil bacteria. mBio 11, e02293–19 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, T. P., Clegg, T., Bell, T. & Pawar, S. Systematic variation in the temperature dependence of bacterial carbon use efficiency. Ecol. Lett. 24, 2123–2133 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • DeLong, E. F. et al. Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311, 496–503 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Baumas, C. M. et al. Mesopelagic microbial carbon production correlates with diversity across different marine particle fractions. ISME J. 15, 1695–1708 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Datta, M. S., Sliwerska, E., Gore, J., Polz, M. F. & Cordero, O. X. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat. Commun. 7, 11965 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Enke, T. N., Leventhal, G. E., Metzger, M., Saavedra, J. T. & Cordero, O. X. Microscale ecology regulates particulate organic matter turnover in model marine microbial communities. Nat. Commun. 9, 2743 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Briggs, N., Dall’Olmo, G. & Claustre, H. Major role of particle fragmentation in regulating biological sequestration of CO2 by the oceans. Science 367, 791–793 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Poulsen, L. K., Moldrup, M., Berge, T. & Hansen, P. J. Feeding on copepod fecal pellets: a new trophic role of dinoflagellates as detritivores. Mar. Ecol. Prog. Ser. 441, 65–78 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Mayor, D. J., Sanders, R., Giering, S. L. & Anderson, T. R. Microbial gardening in the ocean’s twilight zone: detritivorous metazoans benefit from fragmenting, rather than ingesting, sinking detritus. Bioessays 36, 1132–1137 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bindoff, N. L. et al. Changing ocean, marine ecosystems, and dependent communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 447–587 (Cambridge Univ. Press, 2019).

  • Cooley, S. et al. Oceans and coastal ecosystems and their services. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pörtner, H.-O. et al.) 379–550 (Cambridge Univ. Press, 2022).

  • Stemmann, L., Jackson, G. A. & Gorsky, G. A vertical model of particle size distributions and fluxes in the midwater column that includes biological and physical processes—Part II: application to a three year survey in the NW Mediterranean Sea. Deep Sea Res. I 51, 885–908 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Alcolombri, U. et al. Sinking enhances the degradation of organic particles by marine bacteria. Nat. Geosci. 14, 775–780 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sanders, R. J. et al. Controls over Ocean Mesopelagic Interior Carbon Storage (COMICS): fieldwork, synthesis, and modeling efforts. Front. Mar. Sci. 3, 136 (2016).

    Article 

    Google Scholar
     

  • Korb, R. E. et al. Regional and seasonal differences in microplankton biomass, productivity, and structure across the Scotia Sea: implications for the export of biogenic carbon. Deep Sea Res. II 59, 67–77 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Rembauville, M., Manno, C., Tarling, G. A., Blain, S. & Salter, I. Strong contribution of diatom resting spores to deep-sea carbon transfer in naturally iron-fertilized waters downstream of South Georgia. Deep Sea Res. I 115, 22–35 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Shannon, L. V. & Nelson, G. in The South Atlantic Past and Present Circulation (eds Wefer, G. W. H. et al.) 163–210 (Springer, 1996).

  • Lovecchio, E., Henson, S., Carvalho, F. & Briggs, N. Oxygen variability in the offshore northern Benguela upwelling system from glider data. J. Geophys. Res. Oceans 127, e2022JC019063 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trull, T. W. et al. Autonomous multi-trophic observations of productivity and export at the Australian Southern Ocean Time Series (SOTS) reveal sequential mechanisms of physical–biological coupling. Front. Mar. Sci. 6, 525 (2019).

    Article 

    Google Scholar
     

  • Wynn-Edwards, et al. Particle fluxes at the Australian Southern Ocean Time Series (SOTS) achieve organic carbon sequestration at rates close to the global median, are dominated by biogenic carbonates, and show no temporal trends over 20-years. Front. Earth Sci. 8, 329 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Eriksen, R. et al. Seasonal succession of phytoplankton community structure from autonomous sampling at the Australian Southern Ocean Time Series (SOTS) observatory. Mar. Ecol. Progr. Ser. 589, 13–31 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Siegel, D. et al. An operational overview of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) Northeast Pacific field deployment. Elem. Sci. Anth. 9, 00107 (2021).

    Article 

    Google Scholar
     

  • Estapa, M. et al. Biogenic sinking particle fluxes and sediment trap collection efficiency at Ocean Station Papa. Elementa 9, 00122 (2021).


    Google Scholar
     

  • Boyd, P. & Harrison, P. J. Phytoplankton dynamics in the NE subarctic Pacific. Deep Sea Res. II 46, 2405–2432 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Buesseler, K. O. et al. High-resolution spatial and temporal measurements of particulate organic carbon flux using thorium-234 in the northeast Pacific Ocean during the EXport Processes in the Ocean from RemoTe Sensing field campaign. Elementa 8, 030 (2020).

  • Guieu, C. et al. Introduction: Process studies at the air–sea interface after atmospheric deposition in the Mediterranean Sea—objectives and strategy of the PEACETIME oceanographic campaign (May–June 2017). Biogeosciences 17, 5563–5585 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Guerzoni, S. et al. The role of atmospheric deposition in the biogeochemistry of the Mediterranean Sea. Progr. Oceanogr. 44, 147–190 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Claustre, H., Sciandra, A. & Vaulot, D. Introduction to the special section bio-optical and biogeochemical conditions in the south east Pacific in late 2004: the BIOSOPE program. Biogeosciences 5, 679–691 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bonnet, S. et al. Natural iron fertilization by shallow hydrothermal sources fuels diazotroph blooms in the ocean. Science 380, 812–817 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lampitt, R. S., Wishner, K. F., Turley, C. M. & Angel, M. V. Marine snow studies in the Northeast Atlantic Ocean: distribution, composition and role as a food source for migrating plankton. Mar. Biol. 116, 689–702 (1993).

    Article 

    Google Scholar
     

  • Kiørboe, T. Marine snow microbial communities: scaling of abundances with aggregate size. Aquat. Microb. Ecol. 33, 67–75 (2003).

    Article 

    Google Scholar
     

  • Owens, S. A., Pike, S. & Buesseler, K. O. Thorium-234 as a tracer of particle dynamics and upper ocean export in the Atlantic Ocean. Deep Sea Res. II 116, 42–59 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Lamborg, C. H. et al. The flux of bio-and lithogenic material associated with sinking particles in the mesopelagic “twilight zone” of the northwest and North Central Pacific Ocean. Deep Sea Res. II 55, 1540–1563 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Thierry, V. et al. Processing Argo Oxygen Data at the DAC Level Version 2.3.1 (2018).

  • Berggren, M., Lapierre, J. F. & Del Giorgio, P. A. Magnitude and regulation of bacterioplankton respiratory quotient across freshwater environmental gradients. ISME J. 6, 984–993 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robinson, C. Microbial respiration, the engine of ocean deoxygenation. Front. Mar. Sci. 5, 533 (2019).

    Article 

    Google Scholar
     

  • Anderson, L. A. & Sarmiento, J. L. Redfield ratios of remineralization determined by nutrient data analysis. Glob. Biogeochem. Cycles 8, 65–80 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lauvset, S. et al. GLODAPv2.2022: the latest version of the global interior ocean biogeochemical data product. Earth Syst. Sci. Data 14, 5543–5572 (2022).

  • Karl, D. M. & Tilbrook, B. D. Production and transport of methane in oceanic particulate organic matter. Nature 368, 732–734 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Boyd, P. W. et al. Transformations of biogenic particulates from the pelagic to the deep ocean realm. Deep Sea Res. II 46, 2761–2792 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mackinson, B. L., Moran, S. B., Lomas, M. W., Stewart, G. M. & Kelly, R. P. Estimates of micro-, nano-, and picoplankton contributions to particle export in the northeast Pacific. Biogeosciences 12, 3429–3446 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Ramondenc, S. et al. An initial carbon export assessment in the Mediterranean Sea based on drifting sediment traps and the Underwater Vision Profiler data sets. Deep Sea Res. I 117, 107–119 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Bressac, M. et al. Subsurface iron accumulation and rapid aluminum removal in the Mediterranean following African dust deposition. Biogeosciences 18, 6435–6453 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Baker, C. A., Estapa, M. L., Iversen, M., Lampitt, R. & Buesseler, K. Are all sediment traps created equal? An intercomparison study of carbon export methodologies at the PAP-SO site. Progr. Oceanogr. 184, 102317 (2020).

    Article 

    Google Scholar
     

  • Cael, B. B. & Bisson, K. Particle flux parameterizations: quantitative and mechanistic similarities and differences. Front. Mar. Sci. 5, 395 (2018).

    Article 

    Google Scholar
     

  • Berelson, W. M. Particle settling rates increase with depth in the ocean. Deep Sea Res. II 49, 237–251 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Villa‐Alfageme, M. et al. Geographical, seasonal, and depth variation in sinking particle speeds in the North Atlantic. Geophys. Res. Lett. 43, 8609–8616 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Boyd, P. W., Ellwood, M. J., Tagliabue, A. & Twining, B. S. Biotic and abiotic retention, recycling and remineralization of metals in the ocean. Nat. Geosci. 10, 167–173 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kamalanathan, M. et al. Exoenzymes as a signature of microbial response to marine environmental conditions. mSystems 5, e00290–20 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cezairliyan, B. & Ausubel, F. M. Investment in secreted enzymes during nutrient-limited growth is utility dependent. Proc. Natl Acad. Sci. USA 114, E7796–E7802 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahmoudi, N. et al. Illuminating microbial species‐specific effects on organic matter remineralization in marine sediments. Environ. Microbiol. 22, 1734–1747 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, E. M. Coherence of microbial respiration rate and cell-specific bacterial activity in a coastal planktonic community. Aquat. Microb. Ecol. 16, 27–35 (1998).

    Article 

    Google Scholar
     

  • Cabré, A., Shields, D., Marinov, I. & Kostadinov, T. S. Phenology of size-partitioned phytoplankton carbon-biomass from ocean color remote sensing and CMIP5 models. Front. Mar. Sci. 3, 39 (2016).

    Article 

    Google Scholar
     

  • [ad_2]

    Source link

  • Onset of coupled atmosphere–ocean oxygenation 2.3 billion years ago

    [ad_1]

  • Philippot, P. et al. Globally asynchronous sulphur isotope singals require re-definition of the Great Oxidation Event. Nat. Commun. 9, 2245 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Warke, M. R. et al. The Great Oxidation Event preceded a Paleoproterozoic “snowball Earth”. Proc. Natl Acad. Sci. USA 117, 13314–13320 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poulton, S. W. et al. A 200-million-year delay in permanent atmospheric oxygenation. Nature 592, 232–236 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 3017–3315 (2014).

    Article 

    Google Scholar
     

  • Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pavlov, A. A. & Kasting, J. F. Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2, 27–41 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Catling, D. C. & Zahnle, K. J. The Archean atmosphere. Sci. Adv. 6, eaax1420 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bekker, A. et al. Dating the rise of atmospheric oxygen. Nature 427, 117–120 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo, G. et al. Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago. Sci. Adv. 2, e1600134 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Izon, G. et al. Bulk and grain-scale minor sulfur isotope data reveal complexities in the dynamics of Earth’s oxygenation. Proc. Natl Acad. Sci. USA 119, e2025606119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uveges, B. T., Izon, G., Ono, S., Beukes, N. J. & Summons, R. E. Reconciling discrepant minor sulfur isotope records of the Great Oxidation Event. Nat. Commun. 14, 279 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gumsley, A. P. et al. Timing and tempo of the Great Oxidation Event. Proc. Natl Acad. Sci. USA 114, 1811–1816 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olson, S. L., Kump, L. R. & Kasting, J. F. Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases. Chem. Geol. 362, 35–43 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ostrander, C. M., Johnson, A. C. & Anbar, A. D. Earth’s first redox revolution. Annu. Rev. Earth Planet. Sci. 49, 337–366 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Reinhard, C. T. & Planavsky, N. J. The history of ocean oxygenation. Ann. Rev. Mar. Sci. 14, 331–353 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Calvert, S. E. & Pedersen, T. F. Sedimentary geochemistry of manganese: Implications for the environment of formation of manganiferous black shales. Econ. Geol. 91, 36–47 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Rehkämper, M. et al. Thallium isotope variations in seawater and hydrogenetic, diagenetic, and hydrothermal ferromanganese deposits. Earth Planet. Sci. Lett. 197, 65–81 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Phillips, R. F. et al. The role of manganese oxide mineralogy in thallium isotopic fractionation upon sorption. Geochim. Cosmochim. Acta 356, 83–92 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nielsen, S. G., Rehkämper, M. & Prytulak, J. Investigation and application of thallium isotope fractionation. Rev. Mineral. Geochem. 82, 759–798 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Owens, J. D., Nielsen, S. G., Horner, T. J., Ostrander, C. M. & Peterson, L. C. Thallium-isotopic compositions of euxinic sediments as a proxy for global manganese-oxide burial. Geochim. Cosmochim. Acta 213, 291–307 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, Y., Lu, W., Costa, K. M. & Nielsen, S. G. Beyond anoxia: exploring sedimentary thallium isotopes in paleo-redox reconstructions from a new core top collection. Geochim. Cosmochim. Acta 333, 347–361 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ostrander, C. M. et al. Thallium isotope cycling between waters, particles, and sediments across a redox gradient. Geochim. Cosmochim. Acta 348, 397–409 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nielsen, S. G. et al. Thallium isotopes in early diagenetic pyrite – a paleoredox proxy? Geochim. Cosmochim. Acta 75, 6690–6704 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dunk, R. M., Mills, R. A. & Jenkins, W. J. A reevaluation of the oceanic uranium budget for the Holocene. Chem. Geol. 190, 45–67 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Miller, C. A., Peucker-Ehrenbrink, B., Walker, B. D. & Marcantonio, F. Re-assessing the surface cycling of molybdenum and rhenium. Geochim. Cosmochim. Acta 75, 7146–7179 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ku, T.-L., Mathieu, G. G. & Knauss, K. G. Uranium in open ocean: concentration and isotopic composition. Deep-Sea Res. 24, 1005–1017 (1977).

    CAS 

    Google Scholar
     

  • Erickson, B. E. & Helz, G. R. Molybdenum(VI) speciation in sulfidic waters: stability and lability of thiomolybdates. Geochim. Cosmochim. Acta 64, 1149–1158 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hetzel, A., Böttcher, M. E., Wortmann, U. G. & Brumsack, H.-J. Paleo-redox conditions during OAE-2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207). Palaeogeogr. Palaeoclimatol. Palaeoecol. 273, 302–328 (2009).

    Article 

    Google Scholar
     

  • Hannah, J. L., Bekker, A., Stein, H. J., Markey, R. J. & Holland, H. D. Primitive Os and 2316 Ma age for marine shale: implications for Paleoproterozoic glacial events and the rise of atmospheric oxygen. Earth Planet. Sci. Lett. 225, 43–52 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rasmussen, B., Bekker, A. & Fletcher, I. R. Correlation of Paleoproterozoic glaciations based on U-Pb zircon ages for tuff beds in the Transvaal and Huronian Supergroups. Earth Planet. Sci. Lett. 382, 173–180 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zerkle, A. L. et al. Onset of the aerobic nitrogen cycle during the Great Oxidation Event. Nature 542, 465–467 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Raiswell, R. et al. The iron paleoredox proxies: a guide to the pitfalls, problems and proper practice. Am. J. Sci. 318, 491–526 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rudnick, R. L. & Gao, S. in The Crust, Vol. 3 (ed. Rudnick, R. L.) 1–64 (Elsevier, 2003).

  • Ostrander, C. M. et al. Fully oxygenated water columns over continental shelves before the Great Oxidation Event. Nat. Geosci. 12, 186–191 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holland, H. D. The Chemistry of the Atmosphere and Oceans (Wiley, 1978).

  • Kirschvink, J. L. et al. Paleoproterozoic snowball Earth: extreme climatic and geochemical global change and its biological consequences. Proc. Natl Acad. Sci. USA 97, 1400–1405 (2000).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson, J. E. et al. Manganese-oxidizing photosynthesis before the rise of cyanobacteria. Proc. Natl Acad. Sci. USA 110, 11238–11243 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daye, M. et al. Light-driven anaerobic microbial oxidation of manganese. Nature 576, 311–314 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, W. et al. Anoxic photogeochemical oxidation of manganese carbonate yields manganese oxide. Proc. Natl Acad. Sci. USA 117, 22698–22704 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anbar, A. D. et al. A whiff of oxygen before the great oxidation event? Science 317, 1903–1906 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaufman, A. J. et al. Late Archean biospheric oxygenation and atmospheric evolution. Science 317, 1900–1903 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bindeman, I. N. et al. Rapid emergence of subaerial landmasses and onset of a modern hydrologic cycle 2.5 billion years ago. Nature 557, 545–548 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kendall, B., Brennecka, G. A., Weyer, S. & Anbar, A. D. Uranium isotope fractionation suggests oxidative uranium mobilization at 2.50 Ga. Chem. Geol. 362, 105–114 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sverjensky, D. A. & Lee, N. The great oxidation event and mineral diversification. Elements 6, 31–36 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Catling, D. in Treatise on Geochemistry 2nd edn. (eds Holland, H. D. & Turekian, K. K.) 177–195 (Elsevier, 2014).

  • Wogan, N. F., Catling, D. C., Zahnle, K. & Claire, M. W. Rapid timescale for an oxic transition during the Great Oxidation Event and the instability of low atmospheric O2. Proc. Natl Acad. Sci. USA 119, e2205618119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nielsen, S. G. et al. Thallium isotope composition of the upper continental crust and rivers—An investigation of the continental sources of dissolved marine thallium. Geochim. Cosmochim. Acta 69, 2007–2019 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Reinhard, C. T., Raiswell, R., Scott, C., Anbar, A. D. & Lyons, T. W. A late Archean sulfidic sea stimulated by early oxidative weathering of the continents. Science 326, 713–716 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Coetzee, L. L. Genetic stratigraphy of the Paleoproterozoic Pretoria Group in the Western Transvaal. MSc thesis, Rand Afrikaans Univ. (2001).

  • Coetzee, L. L., Beukes, N. J., Gutzmer, J. & Kakegawa, T. Links of organic carbon cycling and burial to depositional depth and establishment of a snowball Earth at 2.3 Ga. Evidence from the Timeball Hill Formation, Transvaal Supergroup, South Africa. S. Afr. J. Geol. 109, 109–122 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Eriksson, K. A. The Timeball Hill Formation—a fossil delta. J. Sediment. Res. 43, 1046–1053 (1973).

    Article 

    Google Scholar
     

  • Eriksson, P. G. & Reczko, B. F. F. Contourites associated with pelagic mudrocks and distal delta-fed turbidites in the Lower Proterozoic Timeball Hill Formation epeiric basin (Transvaal Supergroup), South Africa. Sediment. Geol. 120, 319–335 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Ostrander, C. M., Owens, J. D. & Nielsen, S. G. Constraining the rate of oceanic deoxygenation leading up to a Cretaceous Oceanic Anoxic Event (OAE-2: ~94 Ma). Sci. Adv. 3, e1701020 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rehkämper, M. & Halliday, A. N. The precise measurement of Tl isotopic compositions by MC-ICPMS: Application to the analysis of geological materials and meteorites. Geochim. Cosmochim. Acta 63, 935–944 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Nielsen, S. G., Rehkämper, M., Baker, J. & Halliday, A. N. The precise and accurate determination of thallium isotope compositions and concentrations for water samples by MC-ICPMS. Chem. Geol. 204, 109–124 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shu, Y. et al. Tracing subducted sediment inputs to the Ryukyu Arc—Okinawa Trough system: Evidence from thallium isotopes. Geochim. Cosmochim. Acta 217, 462–491 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • [ad_2]

    Source link