Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).
Article
PubMed
Google Scholar
Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).
Article
ADS
CAS
PubMed
Google Scholar
Russell, V. A., Etter, M. C. & Ward, M. D. Layered materials by molecular design: structural enforcement by hydrogen bonding in guanidinium alkane- and arenesulfonates. J. Am. Chem. Soc. 116, 1941–1952 (1994).
Article
CAS
Google Scholar
Holman, K. T., Pivovar, A. M., Swift, J. A. & Ward, M. D. Metric engineering of soft molecular host frameworks. Acc. Chem. Res. 34, 107–118 (2001).
Article
CAS
PubMed
Google Scholar
Yu, S., Xing, G.-L., Chen, L.-H., Ben, T. & Su, B.-L. Crystalline porous organic salts: from micropore to hierarchical pores. Adv. Mater. 32, 2003270 (2020).
Article
CAS
Google Scholar
Reilly, A. M. et al. Report on the sixth blind test of organic crystal structure prediction methods. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 72, 439–459 (2016).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Pulido, A. et al. Functional materials discovery using energy–structure–function maps. Nature 543, 657–664 (2017).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Shields, C. E. et al. Experimental confirmation of a predicted porous hydrogen-bonded organic framework. Angew. Chem. Int. Ed. Engl. 62, e202303167 (2023).
Article
CAS
PubMed
PubMed Central
Google Scholar
Sava, D. F. et al. Capture of volatile iodine, a gaseous fission product, by zeolitic imidazolate framework-8. J. Am. Chem. Soc. 133, 12398–12401 (2011).
Article
CAS
PubMed
Google Scholar
Sava, D. F. et al. Competitive I2 sorption by Cu-BTC from humid gas streams. Chem. Mater. 25, 2591–2596 (2013).
Article
CAS
Google Scholar
Zhang, X. et al. Confinement of iodine molecules into triple-helical chains within robust metal–organic frameworks. J. Am. Chem. Soc. 139, 16289–16296 (2017).
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen, P. et al. Iodine capture using Zr-based metal–organic frameworks (Zr–MOFs): adsorption performance and mechanism. ACS Appl. Mater. Interfaces 12, 20429–20439 (2020).
Article
CAS
PubMed
Google Scholar
Ding, S.-Y. & Wang, W. Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev. 42, 548–568 (2013).
Article
CAS
PubMed
Google Scholar
Diercks, C. S. & Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 355, eaal1585 (2017).
Article
PubMed
Google Scholar
Chen, L. et al. Hydrogen-bonded organic frameworks: design, applications, and prospects. Mater. Adv. 3, 3680–3708 (2022).
Article
CAS
Google Scholar
Simard, M., Su, D. & Wuest, J. D. Use of hydrogen bonds to control molecular aggregation. Self-assembly of three-dimensional networks with large chambers. J. Am. Chem. Soc. 113, 4696–4698 (1991).
Article
CAS
Google Scholar
Mastalerz, M. Porous shape-persistent organic cage compounds of different size, geometry, and function. Acc. Chem. Res. 51, 2411–2422 (2018).
Article
CAS
PubMed
Google Scholar
Yaghi, O. M., Li, G. & Li, H. Selective binding and removal of guests in a microporous metal–organic framework. Nature 378, 703–706 (1995).
Article
ADS
CAS
Google Scholar
Kondo, M., Yoshitomi, T., Matsuzaka, H., Kitagawa, S. & Seki, K. Three-dimensional framework with chaneling cavities for small molecules: {[M2(4, 4′-bpy)3(NO3)4]·xH2O}n (M = Co, Ni, Zn). Angew. Chem. Int. Ed. Engl. 36, 1725–1727 (1997).
Article
CAS
Google Scholar
Xing, G., Yan, T., Das, S., Ben, T. & Qiu, S. Synthesis of crystalline porous organic salts with high proton conductivity. Angew. Chem. Int. Ed. Engl. 57, 5345–5349 (2018).
Article
CAS
PubMed
Google Scholar
Liang, W. et al. Enzyme encapsulation in a porous hydrogen-bonded organic framework. J. Am. Chem. Soc. 141, 14298–14305 (2019).
Article
CAS
PubMed
Google Scholar
O’Shaughnessy, M. et al. Controlling the crystallisation and hydration state of crystalline porous organic salts. Chem. Eur. J. 29, e202302420 (2023).
Article
PubMed
Google Scholar
Xu, Y. et al. Experimentally validated ab initio crystal structure prediction of novel metal–organic framework materials. J. Am. Chem. Soc. 145, 3515–3525 (2023).
Article
CAS
PubMed
PubMed Central
Google Scholar
Darby, J. P. et al. Ab initio prediction of metal–organic framework structures. Chem. Mater. 32, 5835–5844 (2020).
Article
CAS
Google Scholar
Leusen, F. J. J. Crystal structure prediction of diastereomeric salts: a step toward rationalization of racemate resolution. Cryst. Growth Des. 3, 189–192 (2003).
Article
CAS
Google Scholar
Shunnar, A. F. et al. Efficient screening for ternary molecular ionic cocrystals using a complementary mechanosynthesis and computational structure prediction approach. Chem. Eur. J. 26, 4752–4765 (2020).
Article
CAS
PubMed
Google Scholar
Hutskalov, I., Linden, A. & Čorić, I. Directional ionic bonds. J. Am. Chem. Soc. 145, 8291–8298 (2023).
CAS
PubMed
PubMed Central
Google Scholar
Boer, S. A., Morshedi, M., Tarzia, A., Doonan, C. J. & White, N. G. Molecular tectonics: a node-and-linker building block approach to a family of hydrogen-bonded frameworks. Chem. A Eur. J. 25, 10006–10012 (2019).
Article
CAS
Google Scholar
Brekalo, I. et al. Microporosity of a guanidinium organodisulfonate hydrogen-bonded framework. Angew. Chem. Int. Ed. Engl. 59, 1997–2002 (2020).
Article
CAS
PubMed
Google Scholar
Morshedi, M. & White, N. G. Mixed halide/oxoanion-templated frameworks. CrystEngComm 19, 2367–2371 (2017).
Article
CAS
Google Scholar
Morshedi, M., Thomas, M., Tarzia, A., Doonan, C. J. & White, N. G. Supramolecular anion recognition in water: synthesis of hydrogen-bonded supramolecular frameworks. Chem. Sci. 8, 3019–3025 (2017).
Article
CAS
PubMed
PubMed Central
Google Scholar
Tzioumis, N. A., Cullen, D. A., Jolliffe, K. A. & White, N. G. Selective removal of sulfate from water by precipitation with a rigid bis-amidinium compound. Angew. Chemie Int. Ed. Engl. 62, e202218360 (2023).
Article
CAS
Google Scholar
Feng, L. et al. Halogen hydrogen-bonded organic framework (XHOF) constructed by singlet open-shell diradical for efficient photoreduction of U(VI). Nat. Commun. 13, 1389 (2022).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Xie, Y., Ding, X., Wang, J. & Ye, G. Hydrogen-bonding assembly meets anion coordination chemistry: framework shaping and polarity tuning for xenon/krypton separation.Angew. Chem. Int. Ed. Engl. 62, e202313951 (2023).
Article
CAS
PubMed
Google Scholar
Chen, Z. et al. Applying the power of reticular chemistry to finding the missing alb–MOF platform based on the (6,12)-coordinated edge-transitive net. J. Am. Chem. Soc. 139, 3265–3274 (2017).
Article
CAS
PubMed
Google Scholar
Nguyen, H. L. Reticular design and crystal structure determination of covalent organic frameworks. Chem. Sci. 12, 8632–8647 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Cui, P. et al. Mining predicted crystal structure landscapes with high throughput crystallisation: old molecules, new insights. Chem. Sci. 10, 9988–9997 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang, S. & Day, G. M. Global analysis of the energy landscapes of molecular crystal structures by applying the threshold algorithm. Commun. Chem. 5, 86 (2022).
Article
PubMed
PubMed Central
Google Scholar
Zhu, L., Zhang, D., Xue, M., Li, H. & Qiu, S. Direct observations of the MOF (UiO-66) structure by transmission electron microscopy. CrystEngComm 15, 9356–9359 (2013).
Article
CAS
Google Scholar
Wang, X. et al. A cubic 3D covalent organic framework with nbo topology. J. Am. Chem. Soc. 143, 15011–15016 (2021).
Article
CAS
PubMed
Google Scholar
Xing, G. et al. A double helix of opposite charges to form channels with unique CO2 selectivity and dynamics. Chem. Sci. 10, 730–736 (2019).
Article
CAS
PubMed
Google Scholar
Yamamoto, A., Hirukawa, T., Hisaki, I., Miyata, M. & Tohnai, N. Multifunctionalized porosity in zeolitic diamondoid porous organic salt: selective adsorption and guest-responsive fluorescent properties. Tetrahedron Lett. 54, 1268–1273 (2013).
Article
CAS
Google Scholar
Zhang, X. et al. Adsorption of iodine in metal–organic framework materials. Chem. Soc. Rev. 51, 3243–3262 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Haase, F. & Lotsch, B. V. Solving the COF trilemma: towards crystalline, stable and functional covalent organic frameworks. Chem. Soc. Rev. 49, 8469–8500 (2020).
Article
CAS
PubMed
Google Scholar
Xiao, Y. et al. Constructing a 3D covalent organic framework from 2D hcb nets through inclined interpenetration. J. Am. Chem. Soc. 145, 13537–13541 (2023).
Article
CAS
PubMed
Google Scholar
Evans, A. M. et al. Seeded growth of single-crystal two-dimensional covalent organic frameworks. Science 361, 52–57 (2018).
Article
ADS
CAS
PubMed
Google Scholar
Ma, T. et al. Single-crystal x-ray diffraction structures of covalent organic frameworks. Science 361, 48–52 (2018).
Article
ADS
CAS
PubMed
Google Scholar
Beaudoin, D., Maris, T. & Wuest, J. D. Constructing monocrystalline covalent organic networks by polymerization. Nat. Chem. 5, 830–834 (2013).
Article
CAS
PubMed
Google Scholar
Francia, N. F., Price, L. S., Nyman, J., Price, S. L. & Salvalaglio, M. Systematic finite-temperature reduction of crystal energy landscapes. Cryst. Growth Des. 20, 6847–6862 (2020).
Article
CAS
Google Scholar
Butler, P. W. V. & Day, G. M. Reducing overprediction of molecular crystal structures via threshold clustering. Proc. Natl Acad. Sci. USA 120, e2300516120 (2023).
Article
CAS
PubMed
PubMed Central
Google Scholar
Schrödinger MacroModel v.2017-4 (Schrödinger LLC, 2017).
Jorgensen, W. L. & Tirado-Rives, J. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110, 1657–1666 (1988).
Article
CAS
PubMed
Google Scholar
Frisch, M. J. et al. Gaussian v.09 (Gaussian, Inc., 2009).
Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).
Article
CAS
PubMed
Google Scholar
Case, D. H., Campbell, J. E., Bygrave, P. J. & Day, G. M. Convergence properties of crystal structure prediction by quasi-random sampling. J. Chem. Theory Comput. 12, 910–924 (2016).
Article
CAS
PubMed
Google Scholar
Price, S. L. et al. Modelling organic crystal structures using distributed multipole and polarizability-based model intermolecular potentials. Phys. Chem. Chem. Phys. 12, 8478–8490 (2010).
Article
CAS
PubMed
Google Scholar
Pyzer-Knapp, E. O., Thompson, H. P. G. & Day, G. M. An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 72, 477–487 (2016).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Stone, A. J. & Alderton, M. Distributed multipole analysis. Mol. Phys. 56, 1047–1064 (1985).
Article
ADS
CAS
Google Scholar
Hejczyk, K. E. Application of Crystal Structure Prediction to Salts and Cocrystals. PhD thesis, Univ. Cambridge (2010).
Cruz, F. J. A. L., Lopes, J. N. C., Calado, J. C. G. & Minus da Piedade, M. E. A molecular dynamics study of the thermodynamic properties of calcium apatites. 1. Hexagonal phases. J. Phys. Chem. B 109, 24473–24479 (2005).
Article
CAS
PubMed
Google Scholar
Hourahine, B. et al. DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. J. Chem. Phys. 152, 124101 (2020).
Article
ADS
CAS
PubMed
Google Scholar
Luzzolino, L., McCabe, P., Price, S. L. & Brandenburg, J. G. Crystal structure prediction of flexible pharmaceutical-like molecules: density functional tight-binding as an intermediate optimisation method and for free energy estimation. Faraday Discuss. 211, 275–296 (2018).
Article
ADS
Google Scholar
Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B Condens. Matter 47, 558–561 (1993).
Article
ADS
CAS
PubMed
Google Scholar
Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B Condens. Matter 49, 14251–14269 (1994).
Article
ADS
CAS
PubMed
Google Scholar
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
Article
CAS
Google Scholar
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54, 11169–11186 (1996).
Article
ADS
CAS
PubMed
Google Scholar
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B Condens. Matter Mater. Phys. 59, 1758–1775 (1999).
Article
ADS
CAS
Google Scholar
An, S. et al. Porosity modulation in two-dimensional covalent organic frameworks leads to enhanced iodine adsorption performance. Ind. Eng. Chem. Res. 58, 10495–10502 (2019).
Article
CAS
Google Scholar
Coelho, A. A. TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Crystallogr. 51, 210–218 (2018).
Article
ADS
CAS
Google Scholar
Sheldrick, G. M. SHELXT-integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Adv. 71, 3–8 (2015).
Article
ADS
PubMed
PubMed Central
Google Scholar
Sheldrick, G. M.Crystal structure refinement with SHELXL. Acta Crytsallogr. C Struct. Chem.71, 3–8 (2015).
Article
ADS
Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).
Article
ADS
CAS
Google Scholar