Ultrahigh-mobility semiconducting epitaxial graphene on silicon carbide

  • Schwierz, F., Pezoldt, J. & Granzner, R. Two-dimensional materials and their prospects in transistor electronics. Nanoscale 7, 8261–8283 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Bommel, A. J., Crombeen, J. E. & Van Tooren, A. LEED and Auger electron observations of the SiC(0001) surface. Surf. Sci. 48, 463–472 (1975).

    Article 
    ADS 

    Google Scholar
     

  • Norimatsu, W. & Kusunoki, M. Growth of graphene from SiC{0001} surfaces and its mechanisms. Semicond. Sci. Technol. 29, 064009 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nair, M. et al. Band gap opening induced by the structural periodicity in epitaxial graphene buffer layer. Nano Lett. 17, 2681–2689 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Turmaud, J.-P. Variable Range Hopping Conduction in the Epitaxial Graphene Buffer Layer on SiC(0001). Georgia Institute of Technology, PhD thesis (2018).

  • Chen, A., Hutchby, J., Zhirnov, V. & Bourianoff, G. (eds) Emerging Nanoelectronic Devices (Wiley, 2015).

  • de Heer, W. A., Berger, C. & First, P. N. Patterned thin film graphite devices and method for making same. US patent 7,015,142 B2 (2006).

  • Berger, C. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954–17961 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Das Sarma, S., Adam, S., Hwang, E. H. & Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Han, M. Y., Özyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Stergiou, A., Cantón-Vitoria, R., Psarrou, M. N., Economopoulos, S. P. & Tagmatarchis, N. Functionalized graphene and targeted applications – highlighting the road from chemistry to applications. Prog. Mater Sci. 114, 100683 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Emtsev, K. V., Speck, F., Seyller, Th., Ley, L. & Riley, J. D. Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: a comparative photoelectron spectroscopy study. Phys. Rev. B 77, 155303 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Riedl, C., Coletti, C. & Starke, U. Structural and electronic properties of epitaxial graphene on SiC(0 0 0 1): a review of growth, characterization, transfer doping and hydrogen intercalation. J. Phys. D 43, 374009 (2010).

    Article 

    Google Scholar
     

  • de Heer, W. A. et al. Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc. Natl Acad. Sci. USA 108, 16900–16905 (2011).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Heer, W. A. Graphene transistor. US patent 9,171,907 B2 (2015).

  • Nevius, M. S. et al. Semiconducting graphene from highly ordered substrate interactions. Phys. Rev. Lett. 115, 136802 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, L., Zhang, C. & Liu, Y. Why two-dimensional semiconductors generally have low electron mobility. Phys. Rev. Lett. 125, 177701 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Emery, J. D. et al. Chemically resolved interface structure of epitaxial graphene on SiC(0001). Phys. Rev. Lett. 111, 215501 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Conrad, M. et al. Structure and evolution of semiconducting buffer graphene grown on SiC(0001). Phys. Rev. B 96, 195304 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Goler, S. et al. Revealing the atomic structure of the buffer layer between SiC(0001) and epitaxial graphene. Carbon 51, 249–254 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Tairov, Y. M. & Tsvetkov, V. F. Progress in controlling the growth of polytypic crystals. Prog. Cryst. Growth Charact. 7, 111–162 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Bao, J., Yasui, O., Norimatsu, W., Matsuda, K. & Kusunoki, M. Sequential control of step-bunching during graphene growth on SiC (0001). Appl. Phys. Lett. 109, 081602 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Honstein, G., Chatillon, C. & Baillet, F. Thermodynamic approach to the vaporization and growth phenomena of SiC ceramics. I. SiC and SiC–SiO2 mixtures under neutral conditions. J. Eur. Ceram. Soc. 32, 1117–1135 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Müller, G. & Friedrich J. in Encyclopedia of Condensed Matter Physics (eds Bassani, F. et al.) 262–274 (Elsevier, 2005).

  • Huang, L. et al. High-contrast SEM imaging of supported few-layer graphene for differentiating distinct layers and resolving fine features: there is plenty of room at the bottom. Small 14, 1704190 (2018).

    Article 

    Google Scholar
     

  • Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kunc, J., Hu, Y., Palmer, J., Berger, C. & de Heer, W. A. A method to extract pure Raman spectrum of epitaxial graphene on SiC. Appl. Phys. Lett. 103, 201911 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Gammelgaard, L. et al. Graphene transport properties upon exposure to PMMA processing and heat treatments. 2D Mater. 1, 035005 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Donato, N. & Udrea, F. Static and dynamic effects of the incomplete ionization in superjunction devices. IEEE Trans. Electron Devices 65, 4469–4475 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vallejos-Burgos, F., Coudert, F.-X. & Kaneko, K. Air separation with graphene mediated by nanowindow-rim concerted motion. Nat. Commun. 9, 1812 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, M. et al. Electronically engineered interface molecular superlattices: STM study of aromatic molecules on graphite. Phys. Rev. B 76, 155438 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Sul, O. et al. Reduction of hole doping of chemical vapor deposition grown graphene by photoresist selection and thermal treatment. Nanotechnology 27, 505205 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Jariwala, D. et al. Band-like transport in high mobility unencapsulated single-layer MoS2 transistors. Appl. Phys. Lett. 102, 173107 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Li, J.-T. et al. Localized tail state distribution and hopping transport in ultrathin zinc-tin-oxide thin film transistor. Appl. Phys.Lett. 110, 023504 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Chen, J. H. et al. Charged-impurity scattering in graphene. Nat. Phys. 4, 377–381 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Kittel, C. Introduction to Solid State Physics, 8th edn (2004, Wiley).

  • Schwierz, F. Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • de Heer, W. A. Patterned graphene nanoelectronics. Georgia Tech Library Archive. https://doi.org/10.35090/gatech/69985 (2022).

  • de Heer, W. A. The invention of graphene electronics and the physics of epitaxial graphene on silicon carbide. Phys. Scr. 2012, 014004 (2012).

    Article 

    Google Scholar
     

  • Maboudian, R., Carraro, C., Senesky, D. G. & Roper, C. S. Advances in silicon carbide science and technology at the micro- and nanoscales. J. Vacuum Sci. Technol. A 31, 050805 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Schlecht, M. T. et al. An efficient terahertz rectifier on the graphene/SiC materials platform. Sci. Rep. 9, 11205 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Epping, A. et al. Insulating state in low-disorder graphene nanoribbons. Phys, Status Solidi 256, 1900269 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Prudkovskiy, V. S. et al. An epitaxial graphene platform for zero-energy edge state nanoelectronics. Nat. Commun. 13, 7814 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Briggs, N. et al. Epitaxial graphene/silicon carbide intercalation: a minireview on graphene modulation and unique 2D materials. Nanoscale 11, 15440–15447 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gigliotti, J. et al. Highly ordered boron nitride/epigraphene epitaxial films on silicon carbide by lateral epitaxial deposition. ACS Nano 14, 12962–12971 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ottapilakkal, V. et al. Thermal stability of thin hexagonal boron nitride grown by MOVPE on epigraphene. J. Cryst. Growth 603, 127030 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Speck, F. et al. The quasi-free-standing nature of graphene on H-saturated SiC(0001). Appl. Phys. Lett, 99, 122106 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Palmer, J. et al. Controlled epitaxial graphene growth within removable amorphous carbon corrals. Appl. Phys. Lett, 105, 023106 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Riedl, C., Coletti, C., Iwasaki, T., Zakharov, A. A. & Starke, U. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 103, 246804 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     


  • Source link

    Total
    0
    Shares
    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Related Posts