Tag: Galaxies and clusters

  • Formation of a low-mass galaxy from star clusters in a 600-million-year-old Universe

    Formation of a low-mass galaxy from star clusters in a 600-million-year-old Universe

    [ad_1]

    Image preparation

    The cluster field MACS J1423.8 + 2404 was observed with JWST/NIRCam imaging using filters F090W, F115W, F150W, F200W, F277W, F356W, F410M and F444W with exposure times of 6.4 ks each, reaching a signal-to-noise ratio between 5 and 10 for an mAB = 29 point source. It was also observed with JWST/NIRISS imaging using filters F115W, F150W and F200W.

    To reduce the imaging data, we use the photometric pipeline that is presented in more detail in ref. 44. Briefly, the raw data has been reduced using the public grism redshift and line analysis software Grizli43, which masks imaging artefacts, provides astrometric calibrations based on the Gaia Data Release 3 catalogue13 and shifts images using Astrodrizzle. The photometric zero-points are applied as described in ref. 34. RGB image created using six filters of NIRCam observation of the Firefly Sparkle is shown in Fig. 1. We used images from which bright cluster galaxies and intracluster light have been removed, as described in ref. 25. The methodology for modelling and removing diffuse light from cluster galaxies and intracluster light (ICL) is presented in ref. 25. The NIRCam depths (0.3′ diameter aperture) for F090W, F115W, F150W, F200W, F277W, F356W, F410M and F444W are 7.2, 6.6, 5.2, 4.4, 3.0, 2.9, 5.5 and 4.3 nJy, respectively, and the NIRISS depths for F115WN, F150WN and F200WN are 3.6, 4.3 and 4.0 nJy, respectively41.

    Photometry of Firefly Sparkle

    We perform photometry in 10 JWST bands (NIRISS: F115WN, F150WN and F200WN; NIRCam: F115W, F150W, F200W, F277W, F356W, F410M and F444W) in which the Firefly Sparkle is detected from their morphological fit with GALFIT. In other JWST and HST filters, the Firefly Sparkle is not or barely detected; hence, we place upper limits for the entire source. As the object is resolved into at least 10 distinct clusters and a diffuse galaxy component, we perform a morphological fit using Galfit10 to extract the photometric information.

    Point spread functions are extracted empirically by median stacking bright, isolated, non-saturated stars following the methodology described in ref. 28. Convolution kernels for homogenizing all data to the F444W resolution are created with photutils.psf.matching using a SplitCosineBellWindow() windowing function to remove high-frequency noise, which results from floating-point imprecision when taking the ratio of Fourier transforms. We optimize the shape of each window function to minimize the median residual between convolved stars from each source filter that is convolved and stars from the target F444W filter.

    For the morphological fit, we create 10″ × 10″ postage stamps in all 10 filters from the BCG-subtracted images. We determine the priors for the centres of the 10 clusters by visual inspection. Although nine out of the ten appear as point sources, FF-4 has an elongated shape and appears unresolved. We first determine the central coordinates of the 10 clusters and the arc by fitting (1) an elliptical Gaussian for FF-4; (2) nine point sources for the other nine clusters; and (3) another elliptical Gaussian with the bending mode turned on for the diffuse arc to the F115W image, which has the highest resolution (smallest PSF). The free parameters are the centres and total fluxes of all the components, the radius and axis ratio of FF-4, and the radius, axis ratio and bending mode (B2) of the arc. The initial guesses for the coordinates were determined by visual inspection of the F115W image. Once we obtain the fitted central coordinates of all the components from F115W, we again fit all 11 components in F444W, which has the highest signal-to-noise ratio for the arc and FF-4, to determine the radius, axis ratio, position angles of the ellipses, and the bending mode B2 of the arc.

    We use the best-fit centre coordinates from F115W as the central coordinates in all the filters. However, instead of fixing the central coordinates, we allow GALFIT to fit for them in every filter within a very narrow range of ±0.5 pixels (0.02″) to account for the uncertainty in the PSF centre. We also fix the bending mode B2 (2.14), ellipse radius (3.9″), axis ratio (0.08) and position angle (−51.8°) of the arc from the F444W fit. We fix the morphology of FF4 also with radius = 0.59″, axis ratio = 0.1 and position angle = −53°.

    We now fit all 11 components in all 10 filters to determine their fluxes. The resulting models and residuals are shown in Extended Data Fig. 1. Residuals from the fits are negligible, as shown by χ2/ν ~ 1 in the GALFIT fits in all filters. This confirms the original visual impression that nine of the ten clusters are unresolved and an additional smooth component is present.

    To derive the uncertainty in our flux estimation, we inject the full Firefly Sparkle model in 100 random locations in our 10″ × 10″ postage stamps (avoiding the edge) and refit with the exact same setting of GALFIT. We find no significant systematic offset between the fitted flux and the injected flux for any of the 11 components, in any of the filters, showing that our photometric technique is robust to background variations across all filters. The uncertainty in the photometry is calculated from the bi-weight scale of the 100 refitted fluxes. The resulting photometry and the RGB image of the model and the residual are shown in Extended Data Fig. 1. The agreement between NIRISS and NIRCam fluxes in the three overlapping filters is another confirmation of the robustness of photometry. We have used updated zero-points34 and corrected for Milky Way extinction using the colour excess E(B − V) = 0.0272 from ref. 6 and assuming the extinction law in ref. 35 using the factor between the extinction coefficient and colour excess RV = 3.1.

    Spectroscopy extraction and spectral fitting

    NIRSpec spectroscopy has been acquired for MACS J1423.8 + 2404 and spectra were obtained for the Firefly Sparkle, FF-BF and FF-NBF. The spectra for the FF-BF were part of the sample in ref. 23, with zspec = 8.2953 ± 0.0005. The spectra were observed using the PRISM/CLEAR disperser and filter, through three Micro-Shutter Assembly (MSA) masks per cluster with a total exposure time of 2.9 ks per MSA configuration.

    The NIRSpec data were processed using the STScI JWST pipeline (software v.1.8.4 and jwst_1030.pmap) and the msaexp package31. We used the standard JWST pipeline for the level 1 processing, in which we obtained the rate fits files from the raw data. We enabled the jump step option expand_large_events to mitigate contamination by snowball residuals and used a custom persistence correction that masked out pixels that approach saturation within the following 1,200 s for any readout groups. We then used msaexp for level 2 processing, for which we performed the standard wavelength calibration, flat-fielding, path-loss correction and photometric calibration and obtained the 2D spectrum before background subtraction. As the central and upper shutters contain different clusters (see Fig. 2a to find the shutter positions), we need custom background subtraction to avoid self-subtraction. We did this by building the background 2D spectrum by stacking and smoothing the sky spectrum in the empty pixels and obtained the background subtracted 2D spectrum of Firefly Sparkle. We confirmed that this custom background subtraction method works as well as a standard drizzle background subtraction method used in the literature33, using a well-isolated galaxy spectrum from the CANUCS observation (Asada et al., in prep.). We finally extract the 1D spectrum separately in slit 1 and slit 2, by collapsing the 2D spectrum using an inverse-variance weighted kernel following the prescription in ref. 24. We verified that the uncertainty array of the 1D spectrum has the appropriate normalization by testing the distribution of spectral fluctuations in an empty sky region and finding the fractions of pixels at >1 and >2σ as expected.

    Spectral fitting in Firefly Sparkle slit 1

    The resulting 1D spectrum of Firefly Sparkle in slit 1, dominated by the cluster FF-6, is shown in Fig. 2.

    The spectrum exhibits a Balmer jump at λobs ~ 3.5 μm and a turnover at λobs 1.4 μm, probably because of two-photon emission. These features suggest that the nebular continuum should dominate over the stellar continuum in the rest frame UV to optical spectrum within slit 1 (as found for a z = 5.9 galaxy in ref. 12). We thus model the continuum of the spectrum with nebular continuum using the photoionization code CLOUDY v.23 (ref. 5). To determine the dust attenuation value in the continuum model fitting, we first measure the Hγ/Hβ ratio by fitting the Gaussian profiles. The ratio agrees well with the case B recombination, and no significant dust attenuation is indicated. Therefore, in the continuum spectral modelling, we use pure hydrogen gas irradiated by an ionizing source having black-body SED without dust attenuation. We vary the effective temperature of the black body (Teff) and the electron temperature of the (ionized) hydrogen gas (\({T}_{{\rm{e}},{{\rm{H}}}^{+}}\)), and search for the best-fitting model continuum by χ2 minimization. In the continuum fitting, we mask out emission line regions and all wavelengths λobs < 1.2 μm at which the Lyman break is seen in the slit 2 spectrum, because this region may be affected by a neutral hydrogen damping wing. The best-fit model has log(Teff/K) = 5.10 and \(\log ({T}_{{\rm{e}},{{\rm{H}}}^{+}}/K)=4.34\), which is fully consistent with the results in ref. 12. The result of continuum fitting does not change if we consider a slight dust attenuation (AV = 0.1 mag) in the fitting. As discussed in ref. 12, the effective temperature of log(Teff/K) = 5.10 is much hotter than typical massive type O stars and is suggestive of this star-forming cluster having a top-heavy IMF. The IMF of this cluster is further discussed in section ‘SED fitting analysis’.

    Note that the UV continuum turnover feature could be because of the absorption from dense neutral hydrogen either in the intergalactic medium (IGM) or in the circumgalactic medium (CGM). However, in the case of slit 1 spectrum, we expect the effect of IGM and CGM damping absorption to be negligible or limited at λobs < 1.2 μm based on the blue continuum and sharp drop-out in the slit 2 spectrum (see section ‘Spectral fitting in Firefly Sparkle slit 2’ for details of slit 2 spectrum). Considering the spatial proximity of the slit 1 and slit 2 regions (Fig. 2), we can assume the absorption feature from line-of-sight neutral hydrogen to be the same in the slit 1 and slit 2 spectra. The slit 2 spectrum is rather blue and has a sharp Lyman break starting at λobs = 1.2 μm, whereas the slit 1 spectrum shows the turnover starting at λobs ~ 1.4 μm. Thus, the turnover feature should not be because of the neutral hydrogen absorption, but rather because of the intrinsic continuum shape of the source. Nevertheless, to avoid the possible effect of the neutral hydrogen absorption, we mask out λobs < 1.2 μm in the nebular continuum fitting above (corresponding to 1,290 Å in the rest frame).

    Having the model continuum, we subtract the underlying model continuum from the observed spectrum and measure the spectroscopic redshift and emission line fluxes by fitting Gaussian profiles. The best-fitting model spectrum with nebular continuum and Gaussian profiles is shown in Fig. 2b (red solid curve). We securely detect emission lines of [O iii]λλ4959, 5007, Hβ, [Oiii]λ4363, Hγ, Hδ and [Neiii]λλ3869, 3889. We do not find significant detection of [Oii]λ3727 and obtain an upper limit for the flux of this line. There is a tentative detection of the blended line of [Oiii]λλ1661 + 1666, although the spectral resolution of the prism is low at this wavelength making this doublet difficult to securely detect and separate from Heiiλ1640. We use these emission line fluxes to estimate the physical parameters in slit 1. We first estimate the dust attenuation based on Balmer decrements. Both the Hγ/Hβ and Hδ/Hβ ratios are consistent with theoretical predictions in case B recombination21 within the uncertainties, suggesting there is no significant dust attenuation (Extended Data Fig. 3, red squares in the left). This result is consistent with the initial measurement before the continuum fitting above and supports the validity of the dust-free assumption in the nebular continuum fitting process. Therefore, we do not correct for dust attenuation in the following measurements of emission line ratios and physical parameters in this section.

    We next measure the electron temperature using temperature-sensitive emission line ratios: [Oiii]4959+5007/[Oiii]4363 and [Oiii]5007/[Oiii]1661+1666. We assume the electron density to be ne = 103 cm−3, which is consistent with recent JWST observations of similarly high-z galaxies7 and obtain consistent independent temperature measurements within the uncertainties (\({T}_{{\rm{e}},{{\rm{O}}}^{++}}={4.0}_{-0.9}^{+2.6}\,{\rm{K}}\) and \({2.9}_{-0.4}^{+0.7}\times 1{0}^{4}\,{\rm{K}}\), respectively; Extended Data Fig. 3 (right)). Note that because the [Oiii]λλ1661 + 1666 detection is tentative and potentially blended with Heiiλ1640, we consider [Oiii]λ4363 to be more reliable.

    We note that in ref. 16, the authors measured a similar ratio of [Oiii]4959+5007/[Oiii]4363 in the z = 6 galaxy RXCJ2248-ID to that of slit 1. In ref. 16, medium resolution spectroscopy was used to determine the electron density directly. They found that when using lines with higher ionization potential than O+, the electron density was higher (ne ~ 105 cm−3) than is typically found from [Oii]λ3727 (ref. 7). This high electron density leads to a lower electron temperature for their galaxy of \({T}_{{\rm{e}},{{\rm{O}}}^{++}}=2.5\times 1{0}^{4}\,{\rm{K}}\). Similarly, if we assume the electron density of ne = 105 cm−3 instead for our slit 1 spectrum, the electron temperature from [Oiii]λ4363 becomes \({T}_{{\rm{e}},{{\rm{O}}}^{++}}={3.2}_{-0.96}^{+1.6}\), which is in between the two measurements based on [Oiii]λλ1661 + 1666 and [Oiii]λ4363 when assuming ne ~ 103 cm−3 above. To consider the possibility of a somewhat higher electron density in the highly ionized region, we adopt the mean value of our two electron temperature measurements (\({T}_{{\rm{e}},{{\rm{O}}}^{++}}=3.5\times 1{0}^{4}\,{\rm{K}}\)) as our fiducial value and propagate the full range of the two measurement uncertainties into the following metallicity measurement.

    Based on the electron temperature measurement, we obtained the oxygen abundance from [Oiii]4959+5007/Hβ and [Oii]3727/Hβ ratios, following the prescription in ref. 8. We assume the electron density to be ne = 103 cm−3. The total oxygen abundance is calculated from O++/H+ and O+/H+, and the higher ionizing state oxygen is ignored30. As the [Oii]λ3727 emission line is undetected, we can obtain only an upper limit for O+/H+, but the upper limit for the abundance of the singly ionized oxygen is negligibly small as compared with the doubly ionized oxygen. We thus derived the total oxygen abundance from O++/H+, yielding \(12+\log ({\rm{O/H}})=7.0{5}_{-0.37}^{+0.22}\) (\({Z}_{{\rm{gas}}}/{Z}_{\odot }=0.0{2}_{-0.01}^{+0.04}\) assuming the solar abundance to be 8.69; ref. 38).

    We also derive the ionization parameters using the ionization-sensitive emission line ratios: [Oiii]5007/[Oii]3727 and [Neiii]3869/[Oii]3727. Following the prescription in refs. 45,46, we obtain the lower limit for the ionization parameters (log  U) from these two ratios. Both ratios provide a similar limit of log U > −2.0.

    All the emission line flux measurements and the derived physical parameters in Firefly Sparkle slit 1 are presented in Extended Data Table 1. We also compare the diagnostic emission line ratios in Firefly Sparkle with those in other galaxy population in Fig. 2d. We use the ionization-sensitive line ratio O32 ([Oiii]5007/[Oii]3727) and the temperature-sensitive line ratio RO3 ([Oiii]4959+5007/[Oiii]4363) and compare these line ratios with other [Oiii]λ4363-detected galaxies at z = 2–9 from previous JWST observations2 and those in the local universe from SDSS observations14. Extended Data Fig. 3 (middle) presents a similar comparison but uses another ionization-sensitive line ratio Ne3O2 ([Neiii]3869/[Oii]3727) instead of O32.

    Spectral fitting in Firefly Sparkle slit 2

    In contrast to slit 1, the extracted 1D spectrum in Firefly Sparkle slit 2 does not show nebular continuum features, and the blue continuum is rather smooth with a sharp drop-out because of the Lyman break at λobs ~ 1.2 μm. We thus derive the emission line fluxes from the slit 2 spectrum by fitting Gaussian profiles with the continuum being modelled by a constant offset around each emission line. We detect [Oiii]λλ4959,5007, Hβ, Hγ, Hδ, [Neiii]λ3869 and [Oii]λ3727 emission lines in the slit 2 spectrum but do not detect [Oiii]λ4363.

    We then derive the physical properties in the same way as done for Firefly Sparkle slit 1 spectrum. We measure the dust attenuation from Balmer decrement, Hγ/Hβ and Hδ/Hβ, and find both line ratios agree well with the predicted ratios under case B recombination (blue squares in Extended Data Fig. 3 (left)). This suggests that the dust attenuation is negligible in the slit 2 spectrum as well, and we do not make a dust attenuation correction.

    As we do not detect the temperature-sensitive emission lines of [Oiii]λ1666 or [Oiii]λ4363 in the slit 2 spectrum, we cannot measure the electron temperature and the metallicity from the direct-temperature method. We thus obtain only the upper limit for the electron temperature (\({T}_{{\rm{e}},{{\rm{O}}}^{++}}\)) from the non-detection of [Oiii]λ4363. The electron temperature in Firefly Sparkle slit 2 is shown to be \({T}_{{\rm{e}},{{\rm{O}}}^{++}} < 1.8\times 1{0}^{4}\,{\rm{K}}\) (1σ) or <4.5 × 104 K (3σ). To visualize the difference in physical properties in slit 1 and slit 2, we show the diagnostic emission line ratios of Firefly Sparkle slit 2 in Fig. 2d and Extended Data Fig. 3 (middle) as well.

    SED fitting analysis

    SEDs derived from our photometry were analysed using a slightly modified version of the Dense Basis method18,47 to determine non-parametric SFHs, masses and ages for our sources in Firefly Sparkle. We adopt the Calzetti attenuation law48 and a Kroupa IMF32 with a flat prior for the high-mass slope α [1., 4.]. We run fits using both the MILES stellar libraries29 and MESA Isochrones and Stellar Tracks (MIST; ref.  17), as well as the Binary Population and Spectral Synthesis (BPASS; refs. 26,36) models to consider for the presence of binary populations. As the latest BPASS version in FSPS (-bin-imf135all 100) assumes a Salpeter IMF with an upper mass cutoff of 100M and does not allow for a varying IMF, we only vary the top-heavy slope of the Kroupa IMF in the MILES + MIST runs with an upper mass cutoff of 120M. This should be considered while comparing the physical properties from the two runs, as allowing for a varying IMF based on the MILES + MIST configuration results in lower stellar masses for those runs because they are preferentially fit with top-heavy SSPs with a greater fraction of light coming from more massive stars. We fix the redshift to that found from the NIRSpec Prism spectroscopy by the [Oiii] λ4959 line at zspec = 8.296 ± 0.001. All other parameters are left free. We run the SED fits in two configurations to account for different possibilities of the nature of the individual clusters:

    1. 1.

      SSP fits: to account for the possibility that the individual clumps are star clusters, which is likely given the physical scales of the clusters and the extreme emission lines in the spectra, we modify the code to fit for instantaneous bursts of star formation, described by SSPs. In this case, we assume a flat prior in the log age of the SSP from 105 years to the age of the universe at zspec = 8.296 ± 0.001 instead of the non-parametric defaults for the SFH in Dense Basis.

    2. 2.

      Non-parametric SFH fits (Dense Basis): to fit the diffuse body of the galaxy and to account for the possibility that the clusters are nuclear star clusters or remnants of previous mergers, we also run fits with non-parametric SFHs with a Dirichlet prior. The main advantage of using Dense Basis with non-parametric SFHs is that they allow us to account for flexible stellar populations, which is important at these redshifts49 because star formation is expected to be stochastic and may be underestimated if fit using traditional parametric assumptions39,50.

    We perform our fitting in two stages—we initially perform a joint spectrophotometric fit to the NIRSpec Prism spectrum along with the HST + NIRISS + NIRCam photometry in the slits in which both exist (Extended Data Fig. 4). We correct for slit loss considering two factors—the amount of light lost due to the changing PSF as a function of wavelength and an overall multiplicative correction to match the spectrum against the photometric measurements. We modify the default Dense Basis method in this stage to additionally fit for the slope at the massive end of the IMF, the gas-phase metallicity and the ionization parameter, using the relevant parameters from FSPS (imf3, gas_logz and gas_logu). Doing so allows us to substantially constrain priors on star formation rate, IMF, dust, ionization parameter and metallicity that we then use to fit the photometry. We find that the fits are consistent with negligible dust attenuation, consistent with our estimates from measuring the Balmer decrement. We also find that our fits rule out the part of parameter space consistent with the canonical Chabrier-like or Kroupa-like IMF (with the high-mass slope ≈ 2.3) in favour of more top-heavy slopes of about \({1.5}_{-0.6}^{+0.7}\) for slit 1, which contains portions of clusters 3, 4, 5 and 6. We find weaker constraints from the spectrum for slit 2, which still skews towards top-heaviness but with large uncertainties of about \({1.7}_{-0.7}^{+0.9}\). Finally, we find estimates of both stellar and gas-phase metallicities to be sub-solar, consistent with estimates from the line ratios.

    Using our photometry (Extended Data Table 4), we now determine the stellar properties of each individual component by running a second set of fits using the same set of parameters that are used to fit the spectrophotometry. Although parameters such as the metallicity and ionization parameter are only loosely constrained by these fits, we obtain parameter estimates for the stellar masses, star formation rates and ages of the individual star clusters with uncertainties that marginalize over the variations in the other parameters.

    Both photometry and corresponding fits to the SED fit are shown in Extended Data Fig. 5, with variations in the stellar mass, age and reduced χ2 of the fits for each of the four scenarios (SSPs fits with MILES + MIST and BPASS, and Dense Basis fits with MILES + MIST and BPASS) shown in Extended Data Table 2. All 10 components have intrinsic (corrected for magnification) stellar masses of about 105–106M and sSFR of 10−7 yr−1. Although the error bars are large, the distinct colours of the clusters hint at different formation times. Although the smooth component contains a large fraction of the stellar mass, the bulk (about 57%) lies in the clusters. Extended Data Table 3 lists the physical properties of the individual components as well as the full Firefly Sparkle, BF and NBF galaxies.

    We find that the SSP fits are generally less massive compared with the Dense Basis fits, because the light from the SED is modelled by a single epoch of star formation instead of an extended episode. As light from the massive stars responsible for young star formation are much brighter than older stellar populations, they can describe the observed SED with a lower mass. However, the SSP fits often cannot capture both the UV slopes and the nebular emission in the rest-optical, as seen for clusters 1, 3, 7 and 8 in Extended Data Fig. 5 and often approximate it using a Balmer break, leading to posteriors consistent with much older ages than the median values.

    Although the tage from SSP and t50 from Dense Basis fits (Extended Data Table 2) may seem inconsistent, it is important to note that the Dense Basis fits for most star clusters indicate a sharp burst of star formation within the past 10 million years (Extended Data Fig. 6). By design, an SSP is biased towards this recent burst, whereas a non-parametric SFH can accommodate extended episodes of star formation. However, with our current data, we cannot distinguish between extended SFH in the star clusters and the contribution of light from the diffused arc.

    The masses of the clusters also scale with the top-heaviness of the high-mass end of the IMF in the MILES + MIST fits, with lower masses for more top-heavy IMF values as that scale the amount of light from massive stars. In comparison, the BPASS fits in the current setup are done at the canonical Kroupa IMF, leading to higher masses for those fits. At the same IMF slope, the masses are comparable within uncertainties for the different SPS models, and the sSFR and age/t50 values are consistent even marginalizing over the IMF posteriors. Given the observational constraints and the χ2 from the fits in Extended Data Table 2, it is not currently possible to definitively rule out any of the current fitting approaches.

    Lens modelling

    We use Lenstool9 to build a strong lensing model of the MACS 1423 cluster, to be fully presented in Desprez et al. (manuscript in preparation). This model is constrained with the three multiple image systems that were leveraged in ref. 3, for which we provide additional information obtained from the CANUCS data. The first two systems are those presented in ref. 27, one at z = 2.84 for which we account for the two clusters visible in the four images of the objects, and the second one with three images at z = 1.779 for which we identify another cluster in the two northernmost images for improved constraints. The last system is composed of five images11 for which we provide a new spectroscopic redshift measurement of z = 1.781 that is in agreement with photometric and geometric redshifts previously measured.

    The different mass components are parameterised as double Pseudo-Isothermal Elliptical (dPIE) profiles4. The model is composed of a large cluster scale mass halo, an independent galaxy scale centred on the brightest cluster galaxy and small galaxy scale mass components to account for the contribution of all cluster members that follow a mass–luminosity scaling relation22. For all galaxies, their positions, ellipticities and orientations have been fixed to these measured from the images. The final best model manages to reproduce the position of the input multiple images with a distance rms of 0.46″.

    Magnifications are obtained by generating convergence and shear maps around the Firefly Sparkle with a size of 20″ and a resolution of 10 milli-arcsec per pixel. Uncertainties in the magnifications are computed from 100 randomly selected models from the optimization of Lenstool after its convergence around the minimum χ2. The numbers provided in Extended Data Table 3 are the median and ±1σ limits on the distribution of the 100 values obtained at the position of each cluster. We measured the average magnification of the FF-arc by using the GALFIT model of the arc (in F200W) and selecting all pixels with flux >10% of maximum flux. We then computed the best magnification value for all selected pixels and computed the mean and standard deviation values for these to find the magnification of the arc (μ = 24.4 ± 6.0).

    The source plane reconstruction is made using the best GALFIT model to compute the source plane positions and magnification for the 10 star clusters. We use Lenstool to generate a source plane image reconstruction of the diffuse light of the galaxy with a smooth PSF-deconvolved model of its light profile. We use GALFIT to add 10 point sources convolved with the appropriate PSFs to the diffused source plane model at the source plane positions of the star clusters with the demagnified fluxes. This process is repeated to generate source plane models in all filters. We also generate a mass map using the same prescription, replacing the demagnified fluxes with the demagnified masses. The resulting source plane RGB image and mass map are shown in Fig. 4c,d.

    Size and surface density of star clusters

    We now investigate the spatial properties of the star clusters. Nine out of the ten star clusters are unresolved even in our highest resolution F115W NIRCam image. FF-4 has a slightly elongated shape visually but has a best-fit major axis size (0.01) smaller than the smallest PSF, making the size estimate unreliable. Hence, we use the half-width half-max of the NIRCam F115W PSF (0.02) to set an upper limit on the size of all 10 star clusters. To determine the upper limits of the sizes of unresolved sources, we use the tangential eigenvalue of magnification 1/λt, which ranges between 14 and 24. This results in a size upper limit between 4 pc and 7 pc. The central star clusters have the highest magnification and the smallest upper limits, whereas the ones near the two ends of the arc have the lowest. We use the upper limit on sizes and the demagnified stellar masses to calculate the lower limit on stellar surface densities as shown in Fig. 3b.

    Abundance matching for MW and M31 progenitors

    To estimate the range of stellar masses of progenitors of both MW-mass and M31-mass galaxies at higher redshift, we adopt a semi-empirical approach combining both simulations and observations. We assume an evolving co-moving number density with redshift, as determined by the abundance matching code from ref. 20, with z = 0 number densities of \(\log (n/{{\rm{Mpc}}}^{3})=-\,2.95\) and \(\log (n/{{\rm{Mpc}}}^{3})=-\,3.4\), respectively, for MW and M31 mass analogues. The code calculates a past median galaxy number density at z2, given an initial number density at z1, using peak halo mass functions. As the merger rate per unit halo per unit Δz is roughly constant, the evolution of the cumulative number density of progenitors of any given galaxy is a power law, with the change described by (0.16Δz) dex.

    In ref. 20, peak halo mass functions are used because the resultant median number densities are less affected by the scatter in stellar mass and luminosity. However, this scatter does affect the 1σ errors in cumulative number density. The 1σ or 68 percentile range grows with increasing redshift, but this growth is also higher for more massive galaxies.

    As the code from ref. 20 does not calculate stellar masses, we obtain the stellar mass ranges of the progenitor populations of MW and M31 analogues using stellar mass functions (SMFs) from various surveys15,19,40. We take the median cumulative number densities at each Δz to find the stellar mass associated with that number density from the corresponding SMF. Moreover, the 1σ errors on the given number density for each redshift are then used to determine the 1σ errors on the stellar mass of the progenitors. At z = 8.3, the median stellar mass of MW progenitors is \(\log ({M}_{\star }/{M}_{\odot })=6.4\pm 0.7\) and the median stellar mass of M31 progenitors is \(\log ({M}_{\star }/{M}_{\odot })=6.9\pm 0.8\). The Firefly Sparkle with a stellar mass of \(\log ({M}_{\star }/{M}_{\odot })={7.0}_{-0.3}^{+1.0}\) is definitely within 1σ stellar mass range of both Milky Way and M31 progenitors. More details on the progenitor matching technique can be found in ref. 37.

    [ad_2]

    Source link

  • Baldry, I. K. et al. Galaxy bimodality versus stellar mass and environment. Mon. Not. R. Astron. Soc. 373, 469–483 (2006).

    ADS 

    Google Scholar
     

  • Gadotti, D. A. Structural properties of pseudo-bulges, classical bulges and elliptical galaxies: a Sloan Digital Sky Survey perspective. Mon. Not. R. Astron. Soc. 393, 1531–1552 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Brooks, A. & Christensen, C. in Galactic Bulges (eds Laurikainen, E., Peletier, R. & Gadotti, D.) 317–353 (Springer, 2016).

  • Oser, L., Naab, T., Ostriker, J. P. & Johansson, P. H. The cosmological size and velocity dispersion evolution of massive early-type galaxies. Astrophys. J. 744, 63 (2012).

    ADS 

    Google Scholar
     

  • Peng, Y.-j et al. Mass and environment as drivers of galaxy evolution in SDSS and zCOSMOS and the origin of the Schechter function. Astrophys. J. 721, 193–221 (2010).

    ADS 

    Google Scholar
     

  • Blain, A. W., Smail, I., Ivison, R. J., Kneib, J. P. & Frayer, D. T. Submillimeter galaxies. Phys. Rep. 369, 111–176 (2002).

    ADS 

    Google Scholar
     

  • Lilly, S. et al. Deep sub-mm surveys: high redshift ULIRGs and the formation of the metal-rich spheroids. Preprint at https://arxiv.org/abs/astro-ph/9903157 (1999).

  • Archibald, E. N. et al. Coupled spheroid and black hole formation, and the multifrequency detectability of active galactic nuclei and submillimetre sources. Mon. Not. R. Astron. Soc. 336, 353–362 (2002).

    ADS 

    Google Scholar
     

  • Dunne, L., Eales, S. A. & Edmunds, M. G. A census of metals at high and low redshift and the connection between submillimetre sources and spheroid formation. Mon. Not. R. Astron. Soc. 341, 589–598 (2003).

    ADS 

    Google Scholar
     

  • De Lucia, G., Springel, V., White, S. D. M., Croton, D. & Kauffmann, G. The formation history of elliptical galaxies. Mon. Not. R. Astron. Soc. 366, 499–509 (2006).

    ADS 

    Google Scholar
     

  • Tacconi, L. J. et al. Submillimeter galaxies at z ~ 2: evidence for major mergers and constraints on lifetimes, IMF, and CO-H2 conversion factor. Astrophys. J. 680, 246–262 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Brisbin, D. et al. An ALMA survey of submillimeter galaxies in the COSMOS field: multiwavelength counterparts and redshift distribution. Astron. Astrophys. 608, A15 (2017).


    Google Scholar
     

  • Le Bail, A. et al. JWST/CEERS sheds light on dusty star-forming galaxies: forming bulges, lopsidedness, and outside-in quenching at cosmic noon. Astron. Astrophys. 688, A53 (2024).


    Google Scholar
     

  • Cardona-Torres, L., Aretxaga, I., Montaña, A., Zavala, J. A. & Faber, S. M. The SCUBA-2 Cosmology Legacy Survey: the EGS deep field – III. The evolution of faint submillimetre galaxies at z < 4. Mon. Not. R. Astron. Soc. 520, 5446–5463 (2023).

    ADS 
    CAS 

    Google Scholar
     

  • Gillman, S. et al. Sub-millimetre galaxies with Webb. Near-infrared counterparts and multi-wavelength morphology. Astron. Astrophys. 676, A26 (2023).

    CAS 

    Google Scholar
     

  • Gullberg, B. et al. An ALMA survey of the SCUBA-2 Cosmology Legacy Survey UKIDSS/UDS field: high-resolution dust continuum morphologies and the link between sub-millimetre galaxies and spheroid formation. Mon. Not. R. Astron. Soc. 490, 4956–4974 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Hodge, J. A. et al. ALMA reveals potential evidence for spiral arms, bars, and rings in high-redshift submillimeter galaxies. Astrophys. J. 876, 130 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Adscheid, S. et al. A3COSMOS and A3GOODSS: continuum source catalogues and multi-band number counts. Astron. Astrophys 685, A1 (2024).


    Google Scholar
     

  • van der Wel, A. et al. 3D-HST+CANDELS: the evolution of the galaxy size–mass distribution since z = 3. Astrophys. J. 788, 28 (2014).

    ADS 

    Google Scholar
     

  • Magnelli, B. et al. CEERS: MIRI deciphers the spatial distribution of dust-obscured star formation in galaxies at 0.1 < z < 2.5. Astron. Astrophys. 678, A83 (2023).

    CAS 

    Google Scholar
     

  • Spergel, D. N. Analytical galaxy profiles for photometric and lensing analysis. Astrophys. J. Suppl. Ser. 191, 58–65 (2010).

    ADS 

    Google Scholar
     

  • Tan, Q.-H. et al. Fitting pseudo-Sérsic (Spergel) light profiles to galaxies in interferometric data: the excellence of the -plane. Astron. Astrophys. 684, A23 (2024).


    Google Scholar
     

  • Sérsic, J. L. Atlas de Galaxias Australes (Observatorio Astronomico, 1968).

  • Dutton, A. A. On the origin of exponential galaxy discs. Mon. Not. R. Astron. Soc. 396, 121–140 (2009).

    ADS 

    Google Scholar
     

  • Wang, E. & Lilly, S. J. The origin of exponential star-forming disks. Astrophys. J. 927, 217 (2022).

    ADS 

    Google Scholar
     

  • Zhang, J. et al. 3D intrinsic shapes of quiescent galaxies in observations and simulations. Mon. Not. R. Astron. Soc. 513, 4814–4832 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Patra, N. N. Molecular scale height in spiral galaxies. Mon. Not. R. Astron. Soc. 484, 81–92 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Padilla, N. D. & Strauss, M. A. The shapes of galaxies in the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 388, 1321–1334 (2008).

    ADS 

    Google Scholar
     

  • Rodríguez, S. & Padilla, N. D. The intrinsic shape of galaxies in SDSS/Galaxy Zoo. Mon. Not. R. Astron. Soc. 434, 2153–2166 (2013).

    ADS 

    Google Scholar
     

  • van der Wel, A. et al. Geometry of star-forming galaxies from SDSS, 3D-HST, and CANDELS. Astrophys. J. Lett. 792, L6 (2014).

    ADS 

    Google Scholar
     

  • Lovell, C. C. et al. An orientation bias in observations of submillimetre galaxies. Mon. Not. R. Astron. Soc. 515, 3644–3655 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Traina, A. et al. A3COSMOS: the infrared luminosity function and dust-obscured star formation rate density at 0.5 < z < 6. Astron. Astrophys. 681, A118 (2024).


    Google Scholar
     

  • Weaver, J. R. et al. COSMOS2020: the galaxy stellar mass function. The assembly and star formation cessation of galaxies at 0.2 < z ≤ 7.5. Astron. Astrophys. 677, A184 (2023).

    CAS 

    Google Scholar
     

  • Elmegreen, B. G., Bournaud, F. & Elmegreen, D. M. Bulge formation by the coalescence of giant clumps in primordial disk galaxies. Astrophys. J. 688, 67 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Dekel, A., Sari, R. & Ceverino, D. Formation of massive galaxies at high redshift: cold streams, clumpy disks, and compact spheroids. Astrophys. J. 703, 785–801 (2009).

    ADS 

    Google Scholar
     

  • Ceverino, D., Dekel, A., Tweed, D. & Primack, J. Early formation of massive, compact, spheroidal galaxies with classical profiles by violent disc instability or mergers. Mon. Not. R. Astron. Soc. 447, 3291–3310 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Toomre, A. in Evolution of Galaxies and Stellar Populations (eds Tinsley, B. M. & Larson, R. B.) 401 (Yale University Observatory, 1977).

  • Scannapieco, C., White, S. D. M., Springel, V. & Tissera, P. B. The formation and survival of discs in a ΛCDM universe. Mon. Not. R. Astron. Soc. 396, 696–708 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Sales, L. V. et al. The origin of discs and spheroids in simulated galaxies. Mon. Not. R. Astron. Soc. 423, 1544–1555 (2012).

    ADS 

    Google Scholar
     

  • Aumer, M. & White, S. D. M. Idealized models for galactic disc formation and evolution in ‘realistic’ ΛCDM haloes. Mon. Not. R. Astron. Soc. 428, 1055–1076 (2013).

    ADS 

    Google Scholar
     

  • Dubois, Y. et al. Dancing in the dark: galactic properties trace spin swings along the cosmic web. Mon. Not. R. Astron. Soc. 444, 1453–1468 (2014).

    ADS 

    Google Scholar
     

  • Bournaud, F. et al. Hydrodynamics of high-redshift galaxy collisions: from gas-rich disks to dispersion-dominated mergers and compact spheroids. Astrophys. J. 730, 4 (2011).

    ADS 

    Google Scholar
     

  • Kalita, B. S. et al. Bulge formation inside quiescent lopsided stellar disks: connecting accretion, star formation, and morphological transformation in a z ~ 3 galaxy group. Astron. Astrophys. 666, A44 (2022).

    CAS 

    Google Scholar
     

  • Kraljic, K. et al. Galaxies flowing in the oriented saddle frame of the cosmic web. Mon. Not. R. Astron. Soc. 483, 3227–3254 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Puglisi, A. et al. The main sequence at z ~ 1.3 contains a sizable fraction of galaxies with compact star formation sizes: a new population of early post-starbursts?. Astrophys. J. Lett. 877, L23 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Silverman, J. D. et al. The molecular gas content and fuel efficiency of starbursts at z ~ 1.6 with ALMA. Astrophys. J. 867, 92 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. Mon. Not. R. Astron. Soc. 446, 521–554 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • McAlpine, S. et al. The nature of submillimetre and highly star-forming galaxies in the EAGLE simulation. Mon. Not. R. Astron. Soc. 488, 2440–2454 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Cibinel, A. et al. Early- and late-stage mergers among main sequence and starburst galaxies at 0.2 ≤ z ≤ 2. Mon. Not. R. Astron. Soc. 485, 5631–5651 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Setton, D. J. et al. UNCOVER NIRSpec/PRISM spectroscopy unveils evidence of early core formation in a massive, centrally dusty quiescent galaxy at zspec = 3.97. Astrophys. J. 974, 145 (2024).

  • Liu, D. et al. Automated mining of the ALMA archive in the COSMOS field (A3COSMOS). I. Robust ALMA continuum photometry catalogs and stellar mass and star formation properties for ~700 galaxies at z = 0.5–6. Astrophys. J. Suppl. Ser. 244, 40 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Elbaz, D. et al. Starbursts in and out of the star-formation main sequence. Astron. Astrophys. 616, A110 (2018).


    Google Scholar
     

  • Silverman, J. D. et al. Concurrent starbursts in molecular gas disks within a pair of colliding galaxies at z = 1.52. Astrophys. J. 868, 75 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Rujopakarn, W. et al. ALMA 200 pc resolution imaging of smooth cold dusty disks in typical z ~ 3 star-forming galaxies. Astrophys. J. 882, 107 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Valentino, F. et al. CO emission in distant galaxies on and above the main sequence. Astron. Astrophys. 641, A155 (2020).

    CAS 

    Google Scholar
     

  • Jin, S. et al. Diagnosing deceivingly cold dusty galaxies at 3.5 < z < 6: a substantial population of compact starbursts with high infrared optical depths. Astron. Astrophys. 665, A3 (2022).

    CAS 

    Google Scholar
     

  • Weaver, J. R. et al. COSMOS2020: a panchromatic view of the Universe to z ~ 10 from two complementary catalogs. Astrophys. J. Suppl. Ser. 258, 11 (2022).

    ADS 

    Google Scholar
     

  • Jin, S. et al. “Super-deblended” dust emission in galaxies. II. Far-IR to (sub)millimeter photometry and high-redshift galaxy candidates in the full COSMOS field. Astrophys. J. 864, 56 (2018).

    ADS 

    Google Scholar
     

  • Chabrier, G. The galactic disk mass function: reconciliation of the Hubble Space Telescope and nearby determinations. Astrophys. J. Lett. 586, L133–L136 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • Daddi, E. et al. Multiwavelength study of massive galaxies at z~2. I. Star formation and galaxy growth. Astrophys. J. 670, 156–172 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • Elbaz, D. et al. The reversal of the star formation-density relation in the distant universe. Astron. Astrophys. 468, 33–48 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • Noeske, K. G. et al. Star formation in AEGIS field galaxies since z =1.1: the dominance of gradually declining star formation, and the main sequence of star-forming galaxies. Astrophys. J. Lett. 660, L43–L46 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • Rodighiero, G. et al. The lesser role of starbursts in star formation at z = 2. Astrophys. J. Lett. 739, L40 (2011).

    ADS 

    Google Scholar
     

  • McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. in Astronomical Data Analysis Software and Systems XVI (eds Shaw, R. A., Hill, F. & Bell, D. J.) 127 (Astronomical Society of the Pacific, 2007).

  • Guilloteau, S. & Lucas, R. in Imaging at Radio through Submillimeter Wavelengths (eds Mangum, J. G. & Radford, S. J. E.) 299 (Astronomical Society of the Pacific, 2000).

  • Martí-Vidal, I., Pérez-Torres, M. A. & Lobanov, A. P. Over-resolution of compact sources in interferometric observations. Astron. Astrophys. 541, A135 (2012).

    ADS 

    Google Scholar
     

  • Franco, M. et al. GOODS-ALMA: 1.1 mm galaxy survey. I. Source catalog and optically dark galaxies. Astron. Astrophys. 620, A152 (2018).

    CAS 

    Google Scholar
     

  • Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    ADS 

    Google Scholar
     

  • Binney, J. Testing for triaxiality with kinematic data. Mon. Not. R. Astron. Soc. 212, 767–781 (1985).

    ADS 

    Google Scholar
     

  • Ryden, B. S. The ellipticity of the disks of spiral galaxies. Astrophys. J. 601, 214–220 (2004).

    ADS 

    Google Scholar
     

  • Narayanan, D. & Krumholz, M. R. A theory for the excitation of CO in star-forming galaxies. Mon. Not. R. Astron. Soc. 442, 1411–1428 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Rujopakarn, W., Rieke, G. H., Eisenstein, D. J. & Juneau, S. Morphology and size differences between local and high-redshift luminous infrared galaxies. Astrophys. J. 726, 93 (2011).

    ADS 

    Google Scholar
     

  • Barcos-Muñoz, L. et al. A 33 GHz survey of local major mergers: estimating the sizes of the energetically dominant regions from high-resolution measurements of the radio continuum. Astrophys. J. 843, 117 (2017).

    ADS 

    Google Scholar
     

  • Ueda, J. et al. Cold molecular gas in merger remnants. I. Formation of molecular gas disks. Astrophys. J. Suppl. Ser. 214, 1 (2014).

    ADS 

    Google Scholar
     

  • Barro, G. et al. Structural and star-forming relations since z ~ 3: connecting compact star-forming and quiescent galaxies. Astrophys. J. 840, 47 (2017).

    ADS 

    Google Scholar
     

  • Xiao, M. Y. et al. Starbursts with suppressed velocity dispersion revealed in a forming cluster at z = 2.51. Astron. Astrophys. 664, A63 (2022).

    CAS 

    Google Scholar
     

  • Lelli, F. et al. Cold gas disks in main-sequence galaxies at cosmic noon: low turbulence, flat rotation curves, and disk-halo degeneracy. Astron. Astrophys. 672, A106 (2023).

    CAS 

    Google Scholar
     

  • Rizzo, F. et al. The ALMA-ALPAKA survey. I. High-resolution CO and [CI] kinematics of star-forming galaxies at z = 0.5–3.5. Astron. Astrophys. 679, A129 (2023).


    Google Scholar
     

  • Amvrosiadis, A. et al. The kinematics of massive high-redshift dusty star-forming galaxies. Preprint at https://arxiv.org/abs/2312.08959 (2023).

  • Liu, D. et al. An ~600 pc view of the strongly lensed, massive main-sequence galaxy J0901: a baryon-dominated, thick turbulent rotating disk with a clumpy cold gas ring at z = 2.259. Astrophys. J. 942, 98 (2023).

    ADS 

    Google Scholar
     

  • Birkin, J. E. et al. KAOSS: turbulent, but disc-like kinematics in dust-obscured star-forming galaxies at z ~ 1.3–2.6. Mon. Not. R. Astron. Soc. 531, 61–83 (2024).

    ADS 

    Google Scholar
     

  • Cappellari, M. Structure and kinematics of early-type galaxies from integral field spectroscopy. Annu. Rev. Astron. Astrophys. 54, 597–665 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • McAlpine, S. et al. The EAGLE simulations of galaxy formation: public release of halo and galaxy catalogues. Astron. Comput. 15, 72–89 (2016).

    ADS 

    Google Scholar
     

  • Camps, P. et al. Data release of UV to submillimeter broadband fluxes for simulated galaxies from the EAGLE project. Astrophys. J. Suppl. Ser. 234, 20 (2018).

    ADS 

    Google Scholar
     

  • Schreiber, C. et al. The Herschel view of the dominant mode of galaxy growth from z = 4 to the present day. Astron. Astrophys. 575, A74 (2015).


    Google Scholar
     

[ad_2]

Source link

  • Accelerated formation of ultra-massive galaxies in the first billion years

    Accelerated formation of ultra-massive galaxies in the first billion years

    [ad_1]

  • Smail, I., Ivison, R. J. & Blain, A. W. A deep sub-millimeter survey of lensing clusters: a new window on galaxy formation and evolution. Astrophys. J. 490, L5–L8 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Hughes, D. H. et al. High-redshift star formation in the Hubble Deep Field revealed by a submillimetre-wavelength survey. Nature 394, 241–247 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Smail, I. et al. The rest-frame optical properties of SCUBA galaxies. Astrophys. J. 616, 71–85 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Walter, F. et al. The intense starburst HDF 850.1 in a galaxy overdensity at z ≈ 5.2 in the Hubble Deep Field. Nature 486, 233–236 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wang, T. et al. A dominant population of optically invisible massive galaxies in the early Universe. Nature 572, 211–214 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hodge, J. A. & da Cunha, E. High-redshift star formation in the Atacama Large Millimetre/submillimetre Array era. R. Soc. Open Sci. 7, 200556 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menci, N. et al. High-redshift galaxies from early JWST observations: constraints on dark energy models. Astrophys. J. 938, L5 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Boylan-Kolchin, M. Stress testing ΛCDM with high-redshift galaxy candidates. Nat. Astron. 7, 731–735 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lovell, C. C. et al. Extreme value statistics of the halo and stellar mass distributions at high redshift: are JWST results in tension with ΛCDM? Mon. Not. R. Astron. Soc. 518, 2511–2520 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Naidu, R. P. et al. Two remarkably luminous galaxy candidates at z ~ 10–12 revealed by JWST. Astrophys. J. 940, L14 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Castellano, M. et al. Early results from GLASS-JWST. III. Galaxy candidates at z ~ 9–15. Astrophys. J. 938, L15 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Labbé, I. et al. A population of red candidate massive galaxies 600 Myr after the Big Bang. Nature 616, 266–269 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Pérez-González, P. G. et al. Life beyond 30: probing the −20 < MUV < −17 luminosity function at 8 < z < 13 with the NIRCam parallel field of the MIRI Deep Survey. Astrophys. J. 951, L1 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Finkelstein, S. L. et al. The complete CEERS early Universe galaxy sample: a surprisingly slow evolution of the space density of bright galaxies at z ~ 8.5–14.5. Astrophys. J. Lett. 969, L2 (2024).

  • Willott, C. J. et al. A steep decline in the galaxy space density beyond redshift 9 in the CANUCS UV luminosity function. Astrophys. J. 966, 74 (2024).

    Article 
    ADS 

    Google Scholar
     

  • McLeod, D. J. et al. The galaxy UV luminosity function at z ~ 11 from a suite of public JWST ERS, ERO, and Cycle-1 programs. Mon. Not. R. Astron. Soc. 527, 5004–5022 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Madau, P. & Dickinson, M. Cosmic star-formation history. Annu. Rev. Astron. Astrophys. 52, 415–486 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Oesch, P. A. et al. The JWST FRESCO survey: legacy NIRCam/grism spectroscopy and imaging in the two GOODS fields. Mon. Not. R. Astron. Soc. 525, 2864–2874 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Giavalisco, M. et al. The Great Observatories Origins Deep Survey: initial results from optical and near-infrared imaging. Astrophys. J. 600, L93–L98 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Fudamoto, Y. et al. Normal, dust-obscured galaxies in the epoch of reionization. Nature 597, 489–492 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Xiao, M.-Y. et al. The hidden side of cosmic star formation at z > 3. Bridging optically dark and Lyman-break galaxies with GOODS-ALMA. Astron. Astrophys. 672, A18 (2023).

    Article 

    Google Scholar
     

  • Barrufet, L. et al. Unveiling the nature of infrared bright, optically dark galaxies with early JWST data. Mon. Not. R. Astron. Soc. 522, 449–456 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Pérez-González, P. G. et al. CEERS key paper. IV. A triality in the nature of HST-dark galaxies. Astrophys. J. 946, L16 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Whitaker, K. E. et al. The Hubble Legacy Field GOODS-S photometric catalog. Astrophys. J. Suppl. Ser. 244, 16 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Rieke, M. J. et al. JADES initial data release for the Hubble Ultra Deep Field: revealing the faint infrared sky with deep JWST NIRCam imaging. Astrophys. J. Suppl. Ser. 269, 16 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Carnall, A. C. et al. Inferring the star formation histories of massive quiescent galaxies with BAGPIPES: evidence for multiple quenching mechanisms. Mon. Not. R. Astron. Soc. 480, 4379–4401 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Boquien, M. et al. CIGALE: a Python code investigating galaxy emission. Astron. Astrophys. 622, A103 (2019).

    Article 

    Google Scholar
     

  • Planck Collaboration Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Article 

    Google Scholar
     

  • Moster, B. P., Naab, T. & White, SimonD. M. Galactic star formation and accretion histories from matching galaxies to dark matter haloes. Mon. Not. R. Astron. Soc. 428, 3121–3138 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Moster, B. P., Naab, T. & White, SimonD. M. EMERGE—an empirical model for the formation of galaxies since z ~ 10. Mon. Not. R. Astron. Soc. 477, 1822–1852 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Tacchella, S. et al. A redshift-independent efficiency model: star formation and stellar masses in dark matter halos at z 4. Astrophys. J. 868, 92 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Pillepich, A. et al. Simulating galaxy formation with the IllustrisTNG model. Mon. Not. R. Astron. Soc. 473, 4077–4106 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Wechsler, R. H. & Tinker, J. L. The connection between galaxies and their dark matter halos. Annu. Rev. Astron. Astrophys. 56, 435–487 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Shuntov, M. et al. COSMOS2020: cosmic evolution of the stellar-to-halo mass relation for central and satellite galaxies up to z ~ 5. Astron. Astrophys. 664, A61 (2022).

    Article 

    Google Scholar
     

  • Riechers, D. A. et al. COLDz: a high space density of massive dusty starburst galaxies ~ 1 billion years after the Big Bang. Astrophys. J. 895, 81 (2020).

    Article 
    ADS 

    Google Scholar
     

  • White, S. D. M. & Rees, M. J. Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering. Mon. Not. R. Astron. Soc. 183, 341–358 (1978).

    Article 
    ADS 

    Google Scholar
     

  • Dekel, A. et al. Efficient formation of massive galaxies at cosmic dawn by feedback-free starbursts. Mon. Not. R. Astron. Soc. 523, 3201–3218 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Li, Z. et al. Feedback-free starbursts at cosmic dawn: observable predictions for JWST. Astron. Astrophys. 690, A108 (2024).

  • Herard-Demanche, T. et al. Mapping dusty galaxy growth at z > 5 with FRESCO: detection of Hα in submm galaxy HDF850.1 and the surrounding overdense structures. Preprint at https://arxiv.org/abs/2309.04525 (2023).

  • Schaye, J. et al. The FLAMINGO project: cosmological hydrodynamical simulations for large-scale structure and galaxy cluster surveys. Mon. Not. R. Astron. Soc. 526, 4978–5020 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Bouwens, R. J. et al. UV-continuum slopes at z ~ 4–7 from the HUDF09+ERS+CANDELS observations: discovery of a well-defined UV color-magnitude relationship for z > = 4 star-forming galaxies. Astrophys. J. 754, 83 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Bouwens, R. J. et al. Lower-luminosity galaxies could reionize the universe: very steep faint-end slopes to the UV luminosity functions at z > = 5–8 from the HUDF09 WFC3/IR observations. Astrophys. J. 752, L5 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pac. 809, 763–795 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Salpeter, E. The luminosity function and stellar evolution. Astrophys. J. 121, 161 (1955).

    Article 
    ADS 

    Google Scholar
     

  • Oke, J. B. & Gunn, J. E. Secondary standard stars for absolute spectrophotometry. Astrophys. J. 266, 713–717 (1983).

    Article 
    ADS 

    Google Scholar
     

  • Kashino, D. et al. The stellar mass versus stellar metallicity relation of star-forming galaxies at 1.6≤z≤3.0 and implications for the evolution of the α-enhancement. Astrophys. J. 925, 82 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Giavalisco, M., Steidel, C. C. & Macchetto, F. D. Hubble Space Telescope imaging of star-forming galaxies at redshifts z > 3. Astrophys. J. 470, 189 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Koekemoer, A. M. et al. CANDELS: the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey—the Hubble Space Telescope observations, imaging data products, and mosaics. Astrophys. J. Suppl. Ser. 197, 36 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Grogin, N. A. et al. CANDELS: the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. Astrophys. J. Suppl. Ser. 197, 35 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Illingworth, G. et al. The Hubble Legacy Fields (HLF-GOODS-S) v1.5 data products: combining 2442 orbits of GOODS-S/CDF-S region ACS and WFC3/IR images. Preprint at https://arxiv.org/abs/1606.00841 (2016).

  • Beckwith, StevenV. W. et al. The Hubble Ultra Deep Field. Astron. J. 132, 1729–1755 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Eisenstein, D. J. et al. Overview of the JWST Advanced Deep Extragalactic Survey (JADES). Preprint at https://arxiv.org/abs/2306.02465 (2023).

  • Bunker, A. J. et al. JADES NIRSpec initial data release for the Hubble Ultra Deep Field: redshifts and line fluxes of distant galaxies from the deepest JWST Cycle 1 NIRSpec multi-object spectroscopy. Preprint at https://arxiv.org/abs/2306.02467 (2023).

  • Hainline, K. N. et al. The cosmos in its infancy: JADES galaxy candidates at z > 8 in GOODS-S and GOODS-N. Astrophys. J. 964, 71 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Williams, C. C. et al. JEMS: a deep medium-band imaging survey in the Hubble Ultra Deep Field with JWST NIRCam and NIRISS. Astrophys. J. Suppl. Ser. 268, 64 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Bertin, E. & Arnouts, S. SExtractor: software for source extraction. Astron. Astrophys. Suppl. Ser. 117, 393–404 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Brammer, G. B., van Dokkum, P. G. & Coppi, P. EAZY: a fast, public photometric redshift code. Astrophys. J. 686, 1503–1513 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Weibel, A. et al. Galaxy build-up in the first 1.5 Gyr of cosmic history: insights from the stellar mass function at z ~ 4 – 9 from JWST NIRCam observations. Mon. Not. R. Astron. Soc. 533, 1808–1838 (2024).

    Article 

    Google Scholar
     

  • Franco, M. et al. GOODS-ALMA: 1.1 mm galaxy survey. I. Source catalog and optically dark galaxies. Astron. Astrophys. 620, A152 (2018).

    Article 

    Google Scholar
     

  • Gómez-Guijarro, C. et al. GOODS-ALMA 2.0: Source catalog, number counts, and prevailing compact sizes in 1.1 mm galaxies. Astron. Astrophys. 658, A43 (2022).

    Article 

    Google Scholar
     

  • Cowie, L. L. et al. A submillimeter perspective on the GOODS fields (SUPER GOODS). III. A large sample of ALMA sources in the GOODS-S. Astrophys. J. 865, 106 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Cowie, L. L. et al. A submillimeter perspective on the GOODS fields (SUPER GOODS). I. An ultradeep SCUBA-2 survey of the GOODS-N. Astrophys. J. 837, 139 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Barger, A. J. et al. A submillimeter perspective on the GOODS fields (SUPER GOODS). V. Deep 450 um imaging. Astrophys. J. 934, 56 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Alcalde Pampliega, Belén et al. Optically faint massive Balmer break galaxies at z > 3 in the CANDELS/GOODS fields. Astrophys. J. 876, 135 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Williams, C. C. et al. Discovery of a dark, massive, ALMA-only galaxy at z ~ 5–6 in a tiny 3 mm survey. Astrophys. J. 884, 154 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Gómez-Guijarro, C. et al. JWST CEERS probes the role of stellar mass and morphology in obscuring galaxies. Astron. Astrophys. 677, A34 (2023).

    Article 

    Google Scholar
     

  • McKinney, J. et al. A near-infrared-faint, far-infrared-luminous dusty galaxy at z ~ 5 in COSMOS-Web. Astrophys. J. 956, 72 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Akins, H. B. et al. Two massive, compact, and dust-obscured candidate z ~ 8 galaxies discovered by JWST. Astrophys. J. 956, 61 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Barro, G. et al. Extremely red galaxies at z = 5–9 with MIRI and NIRSpec: dusty galaxies or obscured active galactic nuclei? Astrophys. J. 963, 128 (2024).

    Article 
    ADS 

    Google Scholar
     

  • van der Vlugt, D. et al. An ultradeep multiband very large array survey of the faint radio sky (COSMOS-XS): new constraints on the optically dark population. Astrophys. J. 951, 131 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Elbaz, D. et al. Starbursts in and out of the star-formation main sequence. Astron. Astrophys. 616, A110 (2018).

    Article 

    Google Scholar
     

  • Puglisi, A. et al. The bright and dark sides of high-redshift starburst galaxies from Herschel and Subaru observations. Astrophys. J. 838, L18 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Matthee, J. et al. Little red dots: an abundant population of faint active galactic nuclei at z ~ 5 revealed by the EIGER and FRESCO JWST surveys. Astrophys. J. 963, 129 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Landt, H. et al. Variability of the coronal line region in NGC 4151. Mon. Not. R. Astron. Soc. 449, 3795–3805 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Charlot, Stéphane & Fall, S. M. A simple model for the absorption of starlight by dust in galaxies. Astrophys. J. 539, 718–731 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Salim, S., Boquien, M. édéric & Lee, J. C. Dust attenuation curves in the local universe: demographics and new laws for star-forming galaxies and high-redshift analogs. Astrophys. J. 859, 11 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Schreiber, C. et al. Dust temperature and mid-to-total infrared color distributions for star-forming galaxies at 0 < z < 4. Astron. Astrophys. 609, A30 (2018).

    Article 

    Google Scholar
     

  • Reddy, N. A. et al. Paschen-line constraints on dust attenuation and star formation at z ~ 1–3 with JWST/NIRSpec. Astrophys. J. 948, 83 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, L. et al. GOODS-ALMA: optically dark ALMA galaxies shed light on a cluster in formation at z = 3.5. Astron. Astrophys. 642, A155 (2020).

    Article 

    Google Scholar
     

  • Jin, S. et al. Diagnosing deceivingly cold dusty galaxies at 3.5 < z < 6: a substantial population of compact starbursts with high infrared optical depths. Astron. Astrophys. 665, A3 (2022).

    Article 

    Google Scholar
     

  • Kocevski, D. D. et al. Hidden little monsters: spectroscopic identification of low-mass, broad-line AGNs at z > 5 with CEERS. Astrophys. J. 954, L4 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Labbe, I. et al. UNCOVER: candidate red active galactic nuclei at 3 < z < 7 with JWST and ALMA. Preprint at https://arxiv.org/abs/2306.07320 (2023).

  • Peng, C. Y. et al. Detailed structural decomposition of galaxy images. Astron. J. 124, 266–293 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Perrin, M. D. et al. Updated point spread function simulations for JWST with WebbPSF. Proc. SPIE 9143, 91433X (2014).

    Article 

    Google Scholar
     

  • Draine, B. T. et al. Andromeda’s dust. Astrophys. J. 780, 172 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Kennicutt, R. C. & Evans, N. J. Star formation in the Milky Way and nearby galaxies. Annu. Rev. Astron. Astrophys. 50, 531–608 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Tinker, J. et al. Toward a halo mass function for precision cosmology: the limits of universality. Astrophys. J. 688, 709–728 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Murray, S. G., Power, C. & Robotham, A. S. G. HMFcalc: an online tool for calculating dark matter halo mass functions. Astron. Comput. 3, 23 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Kugel, R. et al. FLAMINGO: calibrating large cosmological hydrodynamical simulations with machine learning. Mon. Not. R. Astron. Soc. 526, 6103–6127 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schreiber, C. et al. The Herschel view of the dominant mode of galaxy growth from z = 4 to the present day. Astron. Astrophys. 575, A74 (2015).

    Article 

    Google Scholar
     

  • Popesso, P. et al. The main sequence of star-forming galaxies across cosmic times. Mon. Not. R. Astron. Soc. 519, 1526–1544 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Straatman, CarolineM. S. et al. The FourStar Galaxy Evolution Survey (ZFOURGE): ultraviolet to far-infrared catalogs, medium-bandwidth photometric redshifts with improved accuracy, stellar masses, and confirmation of quiescent galaxies to z ~ 3.5. Astrophys. J. 830, 51 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Stefanon, M. et al. The Spitzer/IRAC Legacy over the GOODS fields: full-depth 3.6, 4.5, 5.8, and 8.0 μm mosaics and photometry for > 9000 galaxies at z ~ 3.5 –10 from the GOODS Reionization Era Wide-area Treasury from Spitzer (GREATS). Astrophys. J. Suppl. Ser. 257, 68 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Yamaguchi, Y. et al. ALMA 26 arcmin2 survey of GOODS-S at 1 mm (ASAGAO): near-infrared-dark faint ALMA sources. Astrophys. J. 878, 73 (2019).

    Article 
    ADS 

    Google Scholar
     

  • [ad_2]

    Source link

  • Black hole jets on the scale of the cosmic web

    [ad_1]

  • Hardcastle, M. J. et al. Radio-loud AGN in the first LoTSS data release. The lifetimes and environmental impact of jet-driven sources. Astron. Astrophys. 622, A12 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Perucho, M., Martí, J.-M. & Quilis, V. Long-term FRII jet evolution: clues from three-dimensional simulations. Mon. Not. R. Astron. Soc. 482, 3718–3735 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dabhade, P., Saikia, D. J. & Mahato, M. Decoding the giant extragalactic radio sources. J. Astrophys. Astron. 44, 13 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Ayromlou, M., Nelson, D. & Pillepich, A. Feedback reshapes the baryon distribution within haloes, in halo outskirts, and beyond: the closure radius from dwarfs to massive clusters. Mon. Not. R. Astron. Soc. 524, 5391–5410 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Beck, A. M., Hanasz, M., Lesch, H., Remus, R. S. & Stasyszyn, F. A. On the magnetic fields in voids. Mon. Not. R. Astron. Soc. 429, L60–L64 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Vazza, F. et al. Simulations of extragalactic magnetic fields and of their observables. Class. Quantum Gravity 34, 234001 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Willis, A. G., Strom, R. G. & Wilson, A. S. 3C236, DA240; the largest radio sources known. Nature 250, 625–630 (1974).

    Article 
    ADS 

    Google Scholar
     

  • Machalski, J., Kozieł-Wierzbowska, D., Jamrozy, M. & Saikia, D. J. J1420–0545: the radio galaxy larger than 3C 236. Astrophys. J. 679, 149–155 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Oei, M. S. S. L. et al. The discovery of a radio galaxy of at least 5 Mpc. Astron. Astrophys. 660, A2 (2022).

    Article 

    Google Scholar
     

  • Correa, C. M. et al. Redshift-space effects in voids and their impact on cosmological tests. Part I: the void size function. Mon. Not. R. Astron. Soc. 500, 911–925 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Perucho, M. Dissipative processes and their role in the evolution of radio galaxies. Galaxies 7, 70 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Andernach, H., Jiménez-Andrade, E. F. & Willis, A. G. Discovery of 178 giant radio galaxies in 1059 deg2 of the Rapid ASKAP Continuum Survey at 888 MHz. Galaxies 9, 99 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Dabhade, P. et al. Giant radio galaxies in the LOFAR Two-metre Sky Survey. I. Radio and environmental properties. Astron. Astrophys. 635, A5 (2020).

    Article 

    Google Scholar
     

  • Oei, M. S. S. L. et al. Measuring the giant radio galaxy length distribution with the LoTSS. Astron. Astrophys. 672, A163 (2023).

    Article 

    Google Scholar
     

  • Mostert, R. I. J. et al. Constraining the giant radio galaxy population with machine learning and Bayesian inference. Preprint at https://arxiv.org/abs/2405.00232 (2024).

  • Hardcastle, M. J. et al. The LOFAR Two-Metre Sky Survey. VI. Optical identifications for the second data release. Astron. Astrophys. 678, A151 (2023).

    Article 

    Google Scholar
     

  • Heckman, T. M. & Best, P. N. The coevolution of galaxies and supermassive black holes: insights from surveys of the contemporary universe. Annu. Rev. Astron. Astrophys. 52, 589–660 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Hardcastle, M. Interpreting radiative efficiency in radio-loud AGNs. Na. Astron. 2, 273–274 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Buttiglione, S. et al. An optical spectroscopic survey of the 3CR sample of radio galaxies with z < 0.3. II. Spectroscopic classes and accretion modes in radio-loud AGN. Astron. Astrophys. 509, A6 (2010).

    Article 

    Google Scholar
     

  • Williams, W. L. et al. LOFAR-Boötes: properties of high- and low-excitation radio galaxies at 0.5 < z < 2.0. Mon. Not. R. Astron. Soc. 475, 3429–3452 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Oei, M. S. S. L. et al. Luminous giants populate the dense Cosmic Web. The radio luminosity–environmental density relation for radio galaxies in action. Astron. Astrophys. 686, A137 (2024).

    Article 

    Google Scholar
     

  • Wen, Z. L. & Han, J. L. A catalog of 1.58 million clusters of galaxies identified from the DESI Legacy Imaging Surveys. Astrophys. J. Suppl. Ser. 272, 39 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Planck Collaboration et al. Planck 2015 results. XXVII. The second Planck catalogue of Sunyaev-Zeldovich sources. Astron. Astrophys. 594, A27 (2016).

    Article 

    Google Scholar
     

  • Ineson, J. et al. Radio-loud active galactic nucleus: is there a link between luminosity and cluster environment? Astrophys. J. 770, 136 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Ineson, J. et al. The link between accretion mode and environment in radio-loud active galaxies. Mon. Not. R. Astron. Soc. 453, 2682–2706 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Forero-Romero, J. E., Hoffman, Y., Gottlöber, S., Klypin, A. & Yepes, G. A dynamical classification of the cosmic web. Mon. Not. R. Astron. Soc. 396, 1815–1824 (2009).

    Article 
    ADS 

    Google Scholar
     

  • van Weeren, R. J. et al. Radio observations of ZwCl 2341.1+0000: a double radio relic cluster. Astron. Astrophys. 506, 1083–1094 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Hardcastle, M. J. A simulation-based analytic model of radio galaxies. Mon. Not. R. Astron. Soc. 475, 2768–2786 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Planck Collaboration et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Article 

    Google Scholar
     

  • van Haarlem, M. P. et al. LOFAR: the LOw-Frequency ARray. Astron. Astrophys. 556, A2 (2013).

    Article 

    Google Scholar
     

  • Shimwell, T. W. et al. The LOFAR Two-metre Sky Survey. V. Second data release. Astron. Astrophys. 659, A1 (2022).

    Article 

    Google Scholar
     

  • Shimwell, T. W. et al. The LOFAR Two-metre Sky Survey. I. Survey description and preliminary data release. Astron. Astrophys. 598, A104 (2017).

    Article 

    Google Scholar
     

  • Tasse, C. et al. DDFacet: facet-based radio imaging package. Astrophysics Source Code Library, record ascl:2305.008 (2023).

  • van Weeren, R. J. et al. LOFAR observations of galaxy clusters in HETDEX. Extraction and self-calibration of individual LOFAR targets. Astron. Astrophys. 651, A115 (2021).

    Article 

    Google Scholar
     

  • Offringa, A. R. et al. WSCLEAN: an implementation of a fast, generic wide-field imager for radio astronomy. Mon. Not. R. Astron. Soc. 444, 606–619 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Morabito, L. K. et al. Sub-arcsecond imaging with the International LOFAR Telescope. I. Foundational calibration strategy and pipeline. Astron. Astrophys. 658, A1 (2022).

    Article 

    Google Scholar
     

  • Jackson, N. et al. LBCS: the LOFAR Long-Baseline Calibrator Survey. Astron. Astrophys. 595, A86 (2016).

    Article 

    Google Scholar
     

  • Jackson, N. et al. Sub-arcsecond imaging with the International LOFAR Telescope. II. Completion of the LOFAR Long-Baseline Calibrator Survey. Astron. Astrophys. 658, A2 (2022).

    Article 

    Google Scholar
     

  • Gupta, Y. et al. The upgraded GMRT: opening new windows on the radio Universe. Curr. Sci. 113, 707–714 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Intema, H. T. SPAM: Source Peeling and Atmospheric Modeling. Astrophysics Source Code Library, record ascl:1408.006 (2014).

  • Mohan, N. & Rafferty, D. PyBDSF: Python Blob Detection and Source Finder. Astrophysics Source Code Library, record ascl:1502.007 (2015).

  • Blandford, R. D. & Znajek, R. L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179, 433–456 (1977).

    Article 
    ADS 

    Google Scholar
     

  • Alam, S. et al. The eleventh and twelfth data releases of the Sloan Digital Sky Survey: final data from SDSS-III. Astrophys. J. Suppl. Ser. 219, 12 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Dey, A. et al. Overview of the DESI Legacy Imaging Surveys. Astron. J. 157, 168 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Duncan, K. J. All-purpose, all-sky photometric redshifts for the Legacy Imaging Surveys Data Release 8. Mon. Not. R. Astron. Soc. 512, 3662–3683 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Oke, J. B. et al. The Keck low-resolution imaging spectrometer. Publ. Astron. Soc. Pac. 107, 375 (1995).

    Article 
    ADS 

    Google Scholar
     

  • McCarthy, J. K. et al. in Proc. SPIE Conference on Optical Astronomical Instrumentation (ed. D’Odorico, S.) 81–92 (SPIE, 1998).

  • Steidel, C. C. et al. A survey of star-forming galaxies in the 1.4 z 2.5 redshift desert: overview. Astrophys. J. 604, 534–550 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rockosi, C. et al. in Proc. Ground-based and Airborne Instrumentation for Astronomy III (eds McLean, I. S., Ramsay, S. K. & Takami, H.) 77350R (SPIE, 2010).

  • Prochaska, J. et al. PypeIt: the Python spectroscopic data reduction pipeline. J. Open Source Softw. 5, 2308 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Dawson, K. S. et al. The Baryon Oscillation Spectroscopic Survey of SDSS-III. Astron. J. 145, 10 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Chambers, K. C. et al. The Pan-STARRS1 surveys. Preprint at https://arxiv.org/abs/1612.05560 (2019).

  • Jarrett, T. H. et al. The Spitzer–WISE survey of the ecliptic poles. Astrophys. J. 735, 112 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Calistro Rivera, G., Lusso, E., Hennawi, J. F. & Hogg, D. W. AGNfitter: a Bayesian MCMC approach to fitting spectral energy distributions of AGNs. Astrophys. J. 833, 98 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Martínez-Ramírez, L. N. et al. AGNFITTER-RX: Modeling the radio-to-X-ray spectral energy distributions of AGNs. Astron. Astrophys. 688, A46 (2024).

  • Pasini, T. et al. Radio galaxies in galaxy groups: kinematics, scaling relations, and AGN feedback. Mon. Not. R. Astron. Soc. 505, 2628–2637 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Arnaud, M. et al. The universal galaxy cluster pressure profile from a representative sample of nearby systems (REXCESS) and the YSZ – M500 relation. Astron. Astrophys. 517, A92 (2010).

    Article 

    Google Scholar
     

  • Sun, M. et al. The pressure profiles of hot gas in local galaxy groups. Astrophys. J. Lett. 727, L49 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Cooke, R. J. & Fumagalli, M. Measurement of the primordial helium abundance from the intergalactic medium. Nat. Astron. 2, 957–961 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Lovisari, L., Reiprich, T. H. & Schellenberger, G. Scaling properties of a complete X-ray selected galaxy group sample. Astron. Astrophys. 573, A118 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Ricciardelli, E., Quilis, V. & Planelles, S. The structure of cosmic voids in a ΛCDM Universe. Mon. Not. R. Astron. Soc. 434, 1192–1204 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Upton Sanderbeck, P. R., D’Aloisio, A. & McQuinn, M. J. Models of the thermal evolution of the intergalactic medium after reionization. Mon. Not. R. Astron. Soc. 460, 1885–1897 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Tuominen, T. et al. An EAGLE view of the missing baryons. Astron. Astrophys. 646, A156 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hardcastle, M. J. & Krause, M. G. H. Numerical modelling of the lobes of radio galaxies in cluster environments. Mon. Not. R. Astron. Soc. 430, 174–196 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Barrows, R. S., Comerford, J. M., Stern, D. & Assef, R. J. A catalog of host galaxies for WISE-selected AGN: connecting host properties with nuclear activity and identifying contaminants. Astrophys. J. 922, 179 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, Z.-F., Pan, D.-S., Pang, T.-T. & Huang, Y. A catalog of quasar properties from the Baryon Oscillation Spectroscopic Survey. Astrophys. J. Suppl. Ser. 234, 16 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Sweijen, F. GitHub repository for legacystamps. https://github.com/tikk3r/legacystamps (2021).

  • LOFAR Collaboration. Website for LOFAR surveys data, including LoTSS DR2. https://lofar-surveys.org (2022).

  • Hardcastle, M. J. GitHub repository for ‘A simulation-based analytic model of radio galaxies’. https://github.com/mhardcastle/analytic (2021).

  • Oei, M. S. S. L. Code Ocean capsule for ‘Black hole jets on the scale of the cosmic web’. https://codeocean.com/capsule/3908804/tree (2024).

  • Lang, D., Hogg, D. W. & Schlegel, D. J. WISE photometry for 400 million SDSS sources. Astron. J. 151, 36 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Gordon, Y. A. et al. A quick look at the 3 GHz radio sky. I. Source statistics from the Very Large Array Sky Survey. Astrophys. J. Suppl. Ser. 255, 30 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Helfand, D. J., White, R. L. & Becker, R. H. The last of FIRST: the final catalog and source identifications. Astrophys. J. 801, 26 (2015).

    Article 
    ADS 

    Google Scholar
     

  • [ad_2]

    Source link

  • Most nearby young star clusters formed in three massive complexes

    [ad_1]

  • Lindblad, P. O., Grape, K., Sandqvist, A. & Schober, J. On the kinematics of a local component of the interstellar hydrogen gas possibly related to Gould’s Belt. Astron. Astrophys. 24, 309–312 (1973).

    ADS 
    CAS 

    Google Scholar
     

  • Blaauw, A. in The Physics of Star Formation and Early Stellar Evolution (eds Lada, C. J. & Kylafis, N. D.) 125–154 (Springer, 1991).

  • Stark, A. A. et al. The Bell Laboratories H i survey. Astrophys. J. Suppl. Ser. 79, 77–104 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Olano, C. A. The origin of the local system of gas and stars. Astron. J. 121, 295–308 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Perrot, C. A. & Grenier, I. A. 3D dynamical evolution of the interstellar gas in the Gould Belt. Astron. Astrophys. 404, 519–531 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bally, J. in Handbook of Star Forming Regions Vol. 4 (ed. Reipurth, B.) 459–482 (Astronomical Society of the Pacific, 2008).

  • Fernández, D., Figueras, F. & Torra, J. On the kinematic evolution of young local associations and the Scorpius-Centaurus complex. Astron. Astrophys. 480, 735–751 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Cantat-Gaudin, T. et al. Expanding associations in the Vela-Puppis region: 3D structure and kinematics of the young population. Astron. Astrophys. 626, A17 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Cantat-Gaudin, T. et al. A ring in a shell: the large-scale 6D structure of the Vela OB2 complex. Astron. Astrophys. 621, A115 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Quillen, A. C. et al. Birth sites of young stellar associations and recent star formation in a flocculent corrugated disc. Mon. Not. R. Astron. Soc. 499, 5623–5640 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Beccari, G., Boffin, H. M. J. & Jerabkova, T. Uncovering a 260 pc wide, 35-Myr-old filamentary relic of star formation. Mon. Not. R. Astron. Soc. 491, 2205–2216 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Wang, F. et al. The stellar ‘Snake’ – I. Whole structure and properties. Mon. Not. R. Astron. Soc. 513, 503–515 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hunt, E. L. & Reffert, S. Improving the open cluster census. II. An all-sky cluster catalogue with Gaia DR3. Astron. Astrophys. 673, A114 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Gagné, J. et al. BANYAN. XI. The BANYAN Σ multivariate Bayesian algorithm to identify members of young associations with 150 pc. Astrophys. J. 856, 23 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Gaia Collaboration et al. Gaia Data Release 3. Summary of the content and survey properties. Astron. Astrophys. 674, A1 (2023).

    Article 

    Google Scholar
     

  • Ratzenböck, S. et al. The star formation history of the Sco-Cen association: coherent star formation patterns in space and time. Astron. Astrophys. 678, A71 (2023).

    Article 

    Google Scholar
     

  • Ratzenböck, S. et al. Significance mode analysis (SigMA) for hierarchical structures. An application to the Sco-Cen OB association. Astron. Astrophys. 677, A59 (2023).

    Article 

    Google Scholar
     

  • Zucker, C. et al. Star formation near the Sun is driven by expansion of the Local Bubble. Nature 601, 334–337 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Heiles, C. Whence the Local Bubble, Gum, Orion? GSH 238+00+09, a nearby major superbubble toward Galactic longitude 238°. Astrophys. J. 498, 689–703 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lallement, R. et al. Gaia-2MASS 3D maps of Galactic interstellar dust within 3 kpc. Astron. Astrophys. 625, A135 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Vergely, J. L., Lallement, R. & Cox, N. L. J. Three-dimensional extinction maps: inverting inter-calibrated extinction catalogues. Astron. Astrophys. 664, A174 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Edenhofer, G. et al. A parsec-scale Galactic 3D dust map out to 1.25 kpc from the Sun. Astron. Astrophys. https://doi.org/10.1051/0004-6361/202347628 (2024).

    Article 

    Google Scholar
     

  • Bovy, J. galpy: a python library for galactic dynamics. Astrophys. J. Suppl. Ser. 216, 29 (2015).

    Article 
    ADS 

    Google Scholar
     

  • McInnes, L., Healy, J. & Astels, S. hdbscan: hierarchical density based clustering. J. Open Source Softw. 2, 205 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Pelgrims, V., Ferrière, K., Boulanger, F., Lallement, R. & Montier, L. Modeling the magnetized Local Bubble from dust data. Astron. Astrophys. 636, A17 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Alves, J. et al. A Galactic-scale gas wave in the solar neighbourhood. Nature 578, 237–239 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Konietzka, R. et al. The Radcliffe Wave is oscillating. Nature 628, 62–65 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Kos, J. et al. Discovery of a 21 Myr old stellar population in the Orion complex. Astron. Astrophys. 631, A166 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Clariá, J. J., Lapasset, E., Piatti, A. E. & Ahumada, A. V. IC 2395 and BH 47: only one open cluster in the Vela constellation. Astron. Astrophys. 409, 541–551 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Fleming, G. D., Kirk, J. M. & Ward-Thompson, D. Stellar clustering and the kinematics of stars around Collinder 121 using Gaia DR3. Mon. Not. R. Astron. Soc. 523, 5306–5314 (2023).

    Article 
    ADS 

    Google Scholar
     

  • McCray, R. & Kafatos, M. Supershells and propagating star formation. Astrophys. J. 317, 190–196 (1987).

    Article 
    ADS 

    Google Scholar
     

  • Williams, P. M. The open cluster NGC 2451. Mon. Not. Astron. Soc. South. Afr. 26, 139–143 (1967).

    ADS 

    Google Scholar
     

  • Eggen, O. J. Six clusters in Puppis-Vela. Astron. J. 88, 197–214 (1983).

    Article 
    ADS 

    Google Scholar
     

  • Maíz-Apellániz, J. The origin of the Local Bubble. Astrophys. J. 560, L83–L86 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Fuchs, B., Breitschwerdt, D., De Avillez, M. A., Dettbarn, C. & Flynn, C. The search for the origin of the Local Bubble redivivus. Mon. Not. R. Astron. Soc. 373, 993–1003 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Breitschwerdt, D. et al. The locations of recent supernovae near the Sun from modelling 60Fe transport. Nature 532, 73–76 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Eggen, O. J. Concentrations in the Local Association – I. The southern concentrations NGC 2516, IC 2602, Centaurus-Lupus and Upper Scorpius. Mon. Not. R. Astron. Soc. 204, 377–390 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bouy, H. & Alves, J. Cosmography of OB stars in the solar neighbourhood. Astron. Astrophys. 584, A26 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Abdurro’uf, et al. The seventeenth data release of the Sloan Digital Sky Surveys: complete release of MaNGA, MaStar, and APOGEE-2 Data. Astrophys. J. Suppl. Ser. 259, 35 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Buder, S. et al. The GALAH+ survey: third data release. Mon. Not. R. Astron. Soc. 506, 150–201 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Reid, M. J. et al. Trigonometric parallaxes of high-mass star-forming regions: our view of the Milky Way. Astrophys. J. 885, 131 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bennett, M. & Bovy, J. Vertical waves in the solar neighbourhood in Gaia DR2. Mon. Not. R. Astron. Soc. 482, 1417–1425 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Schönrich, R., Binney, J. & Dehnen, W. Local kinematics and the local standard of rest. Mon. Not. R. Astron. Soc. 403, 1829–1833 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Gieles, M. et al. Star cluster disruption by giant molecular clouds. Mon. Not. R. Astron. Soc. 371, 793–804 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • McMillan, P. J. The mass distribution and gravitational potential of the Milky Way. Mon. Not. R. Astron. Soc. 465, 76–94 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Irrgang, A., Wilcox, B., Tucker, E. & Schiefelbein, L. Milky Way mass models for orbit calculations. Astron. Astrophys. 549, A137 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Dehnen, W. & Binney, J. J. Local stellar kinematics from HIPPARCOS data. Mon. Not. R. Astron. Soc. 298, 387–394 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Kerr, F. J. & Lynden-Bell, D. Review of galactic constants. Mon. Not. R. Astron. Soc. 221, 1023–1038 (1986).

    Article 
    ADS 

    Google Scholar
     

  • Strehl, A. & Ghosh, J. Cluster ensembles – a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2002).

    MathSciNet 

    Google Scholar
     

  • Blaauw, A. The O associations in the solar neighborhood. Annu. Rev. Astron. Astrophys. 2, 213–246 (1964).

    Article 
    ADS 

    Google Scholar
     

  • de Zeeuw, P. T., Hoogerwerf, R., de Bruijne, J. H. J., Brown, A. G. A. & Blaauw, A. A HIPPARCOS census of the nearby OB associations. Astron. J. 117, 354–399 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Bressan, A. et al. parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code. Mon. Not. R. Astron. Soc. 427, 127–145 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Meingast, S., Alves, J. & Rottensteiner, A. Extended stellar systems in the solar neighborhood: V. Discovery of coronae of nearby star clusters. Astron. Astrophys. 645, A84 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Almeida, A., Monteiro, H. & Dias, W. S. Revisiting the mass of open clusters with Gaia data. Mon. Not. R. Astron. Soc. 525, 2315–2340 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Chakraborti, S. & Ray, A. An expanding neutral hydrogen supershell evacuated by multiple supernovae in M101. Astrophys. J. 728, 24 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Astropy Collaboration et al. The Astropy Project: sustaining and growing a community-oriented open-source project and the latest major release (v5.0) of the core package. Astrophys. J. 935, 167 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article 

    Google Scholar
     

  • Zonca, A. et al. healpy: equal area pixelization and spherical harmonics transforms for data on the sphere in Python. J. Open Source Softw. 4, 1298 (2019).

    Article 
    ADS 

    Google Scholar
     

  • [ad_2]

    Source link

  • Author Correction: A small and vigorous black hole in the early Universe

    [ad_1]

  • Kavli Institute for Cosmology, University of Cambridge, Cambridge, UK

    Roberto Maiolino, Jan Scholtz, Joris Witstok, Francesco D’Eugenio, Hannah Übler, Sandro Tacchella, Tobias J. Looser, William M. Baker, Nicolas Laporte & Lester Sandles

  • Cavendish Laboratory – Astrophysics Group, University of Cambridge, Cambridge, UK

    Roberto Maiolino, Jan Scholtz, Joris Witstok, Francesco D’Eugenio, Hannah Übler, Sandro Tacchella, Tobias J. Looser, William M. Baker, Nicolas Laporte & Lester Sandles

  • Department of Physics and Astronomy, University College London, London, UK

    Roberto Maiolino

  • Scuola Normale Superiore, Pisa, Italy

    Stefano Carniani

  • Max-Planck-Institut für Astronomie, Heidelberg, Germany

    Anna de Graaff

  • Centre for Astrophysics Research, Department of Physics, Astronomy and Mathematics, University of Hertfordshire, Hatfield, UK

    Emma Curtis-Lake

  • Centro de Astrobiología (CAB), CSIC–INTA, Madrid, Spain

    Santiago Arribas, Bruno Rodríguez del Pino & Michele Perna

  • Department of Physics, University of Oxford, Oxford, UK

    Andrew Bunker, Jacopo Chevallard & Gareth C. Jones

  • Sorbonne Université, CNRS, Paris, France

    Stéphane Charlot

  • European Southern Observatory, Garching, Germany

    Mirko Curti

  • Department of Astronomy, University of Wisconsin-Madison, Madison, WI, USA

    Michael V. Maseda

  • European Space Agency, Space Telescope Science Institute, Baltimore, MD, USA

    Timothy D. Rawle

  • NRC Herzberg, Victoria, British Columbia, Canada

    Chris J. Willott

  • Steward Observatory University of Arizona, Tucson, AZ, USA

    Eiichi Egami, Kevin N. Hainline, Christopher N. A. Willmer, Christa DeCoursey, Jakob M. Helton, Zhiyuan Ji, Irene Shivaei & Fengwu Sun

  • Center for Astrophysics – Harvard & Smithsonian, Cambridge, MA, USA

    Daniel J. Eisenstein

  • Department of Astronomy and Astrophysics, University of California, Santa Cruz, Santa Cruz, CA, USA

    Brant Robertson

  • NSF’s National Optical-Infrared Astronomy Research Laboratory, Tucson, AZ, USA

    Christina C. Williams

  • School of Physics, University of Melbourne, Parkville, Victoria, Australia

    Kristan Boyett

  • ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Melbourne, Victoria, Australia

    Kristan Boyett

  • Institute of Astronomy, University of Cambridge, Cambridge, UK

    Andrew C. Fabian

  • AURA for European Space Agency, Space Telescope Science Institute, Baltimore, MD, USA

    Nimisha Kumari

  • Department for Astrophysical and Planetary Science, University of Colorado, Boulder, CO, USA

    Erica J. Nelson

  • [ad_2]

    Source link

  • Most of the photons that reionized the Universe came from dwarf galaxies

    [ad_1]

  • Dayal, P. & Ferrara, A. Early galaxy formation and its large-scale effects. Phys. Rep. 780–782, 1–64 (2018).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Mason, C. A., Naidu, R. P., Tacchella, S. & Leja, J. Model-independent constraints on the hydrogen-ionizing emissivity at z > 6. Mon. Not. R. Astron. Soc. 489, 2669–2676 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Robertson, B. E. et al. Identification and properties of intense star-forming galaxies at redshifts z > 10. Nat. Astron. 7, 611–621 (2023).

  • Robertson, B. E. Galaxy formation and reionization: key unknowns and expected breakthroughs by the James Webb Space Telescope. Annu. Rev. Astron. Astrophys. 60, 121–158 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Madau, P. & Haardt, F. Cosmic reionization after Planck: could quasars do it all? Astrophys. J. Lett. 813, L8 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Mitra, S., Choudhury, T. R. & Ferrara, A. Cosmic reionization after Planck II: contribution from quasars. Mon. Not. R. Astron. Soc. 473, 1416–1425 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Naidu, R. P. et al. Rapid reionization by the oligarchs: the case for massive, UV-bright, star-forming galaxies with high escape fractions. Astrophys. J. 892, 109 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Finkelstein, S. L. et al. Conditions for reionizing the Universe with a low galaxy ionizing photon escape fraction. Astrophys. J. 879, 36 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dayal, P. et al. Reionization with galaxies and active galactic nuclei. Mon. Not. R. Astron. Soc. 495, 3065–3078 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Finkelstein, S. L. et al. The evolution of the galaxy rest-frame ultraviolet luminosity function over the first two billion years. Astrophys. J. 810, 71 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Bouwens, R. J. et al. UV luminosity functions at redshifts z 4 to z 10: 10,000 galaxies from HST legacy fields. Astrophys. J. 803, 34 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Robertson, B. E., Ellis, R. S., Furlanetto, S. R. & Dunlop, J. S. Cosmic reionization and early star-forming galaxies: a joint analysis of new constraints from Planck and the Hubble Space Telescope. Astrophys. J. Lett. 802, L19 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Bunker, A. J. et al. JADES NIRSpec initial data release for the Hubble Ultra Deep Field: redshifts and line fluxes of distant galaxies from the deepest JWST Cycle 1 NIRSpec Multi-Object spectroscopy. Preprint at https://doi.org/10.48550/arXiv.2306.02467 (2023).

  • Roberts-Borsani, G. et al. The nature of an ultra-faint galaxy in the cosmic dark ages seen with JWST. Nature 618, 480–483 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mascia, S. et al. Closing in on the sources of cosmic reionization: first results from the GLASS-JWST program. Astron. Astrophys. 672, A155 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ishigaki, M. et al. Full-data results of Hubble Frontier Fields: UV luminosity functions at z 6–10 and a consistent picture of cosmic reionization. Astrophys. J. 854, 73 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Atek, H. et al. Are ultra-faint galaxies at z = 6–8 responsible for cosmic reionization? Combined constraints from the Hubble Frontier Fields clusters and parallels. Astrophys. J. 814, 69 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Bouwens, R. J., Oesch, P. A., Illingworth, G. D., Ellis, R. S. & Stefanon, M. The z 6 luminosity function fainter than −15 mag from the Hubble Frontier Fields: the impact of magnification uncertainties. Astrophys. J. 843, 129 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Matthee, J. et al. Little Red Dots: an abundant population of faint AGN at z ~ 5 revealed by the EIGER and FRESCO JWST surveys. Preprint at https://doi.org/10.48550/arXiv.2306.05448 (2023).

  • Fujimoto, S. et al. CEERS spectroscopic confirmation of NIRCam-selected z 8 galaxy candidates with JWST/NIRSpec: initial characterization of their properties. Astrophys. J. Lett. 949, L25 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Simmonds, C. et al. The ionizing photon production efficiency at z 6 for Lyman-alpha emitters using JEMS and MUSE. Mon. Not. R. Astron. Soc. 523, 5468–5486 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Stanway, E. R. & Eldridge, J. J. Re-evaluating old stellar populations. Mon. Not. R. Astron. Soc. 479, 75–93 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pahl, A. J., Shapley, A., Steidel, C. C., Chen, Y. & Reddy, N. A. An uncontaminated measurement of the escaping Lyman continuum at z 3. Mon. Not. R. Astron. Soc. 505, 2447–2467 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Atek, H., Richard, J., Kneib, J.-P. & Schaerer, D. The extreme faint end of the UV luminosity function at z 6 through gravitational telescopes: a comprehensive assessment of strong lensing uncertainties. Mon. Not. R. Astron. Soc. 479, 5184–5195 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gnedin, N. Y. & Madau, P. Modeling cosmic reionization. Living Rev. Comput. Astrophys. 8, 3 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Chisholm, J. et al. The far-ultraviolet continuum slope as a Lyman Continuum escape estimator at high redshift. Mon. Not. R. Astron. Soc. 517, 5104–5120 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Naidu, R. P. et al. Two remarkably luminous galaxy candidates at z ≈ 10−12 revealed by JWST. Astrophys. J. Lett. 940, L14 (2022).

  • Naidu, R. P. et al. The HDUV Survey: six Lyman continuum emitter candidates at z ~ 2 revealed by HST UV Imaging. Astrophys. J. 847, 12 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Vanzella, E. et al. Direct Lyman continuum and Ly α escape observed at redshift 4. Mon. Not. R. Astron. Soc. 476, L15–L19 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Trebitsch, M., Blaizot, J., Rosdahl, J., Devriendt, J. & Slyz, A. Fluctuating feedback-regulated escape fraction of ionizing radiation in low-mass, high-redshift galaxies. Mon. Not. R. Astron. Soc. 470, 224–239 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ma, X. et al. No missing photons for reionization: moderate ionizing photon escape fractions from the FIRE-2 simulations. Mon. Not. R. Astron. Soc. 498, 2001–2017 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yeh, J. Y.-C. et al. The thesan project: ionizing escape fractions of reionization-era galaxies. Mon. Not. R. Astron. Soc. 520, 2757–2780 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hutter, A., Dayal, P., Legrand, L., Gottlöber, S. & Yepes, G. Astraeus – III. The environment and physical properties of reionization sources. Mon. Not. R. Astron. Soc. 506, 215–228 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bergamini, P. et al. New high-precision strong lensing modeling of Abell 2744. Preparing for JWST observations. Astron. Astrophys. 670, A60 (2023).

    Article 

    Google Scholar
     

  • Furtak, L. J. et al. UNCOVERing the extended strong lensing structures of Abell 2744 with the deepest JWST imaging. Mon. Not. R. Astron. Soc. 523, 4568–4582 (2023).

    ADS 

    Google Scholar
     

  • Oke, J. B. & Gunn, J. E. Secondary standard stars for absolute spectrophotometry. Astrophys. J. 266, 713–717 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bezanson, R. et al. The JWST UNCOVER Treasury survey: Ultradeep NIRSpec and NIRCam ObserVations before the Epoch of Reionization. Preprint at https://doi.org/10.48550/arXiv.2212.04026 (2022).

  • Weaver, J. R. et al. The UNCOVER Survey: a first-look HST + JWST Catalog of 60,000 galaxies near A2744 and beyond. Astrophys. J. Suppl. Ser. 270, 7 (2024).

  • Rieke, M. J. et al. Performance of NIRCam on JWST in Flight. Publ. Astron. Soc. Pacific 135, 028001 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Brammer, G. Grizli: Grism redshift and line analysis software. Astrophysics Source Code Library, record ascl:1905.001 (2019).

  • Lotz, J. M. et al. The Frontier Fields: survey design and initial results. Astrophys. J. 837, 97 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Steinhardt, C. L. et al. The BUFFALO HST Survey. Astrophys. J. Suppl. Ser. 247, 64 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Jakobsen, P. et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. I. Overview of the instrument and its capabilities. Astron. Astrophys. 661, A80 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ferruit, P. et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. II. Multi-object spectroscopy (MOS). Astron. Astrophys. 661, A81 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Heintz, K. E. et al. Extreme damped Lyman-α absorption in young star-forming galaxies at z = 9 − 11. Preprint at https://doi.org/10.48550/arXiv.2306.00647 (2023).

  • Horne, K. An optimal extraction algorithm for CCD spectroscopy. Publ. Astron. Soc. Pacific 98, 609–617 (1986).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bouwens, R. J., Illingworth, G., Ellis, R. S., Oesch, P. & Stefanon, M. z 2–9 galaxies magnified by the Hubble Frontier Field clusters. II. Luminosity functions and constraints on a faint-end turnover. Astrophys. J. 940, 55 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Brammer, G., Strait, V., Matharu, J. & Momcheva, I. grizli. Zenodo zenodo.org/records/6672538 (2022).

  • Brammer, G. B., van Dokkum, P. G. & Coppi, P. EAZY: a fast, public photometric redshift code. Astrophys. J. 686, 1503–1513 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Zitrin, A. et al. Hubble Space Telescope combined strong and weak lensing analysis of the CLASH sample: mass and magnification models and systematic uncertainties. Astrophys. J. 801, 44 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Pascale, M. et al. Unscrambling the lensed galaxies in JWST images behind SMACS 0723. Astrophys. J. Lett. 938, L6 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Bacon, R. et al. The MUSE second-generation VLT instrument. In Ground-based and Airborne Instrumentation for Astronomy III, Vol. 7735 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (eds McLean, I. S. et al.) 773508 (SPIE, 2010).

  • Mahler, G. et al. Strong-lensing analysis of A2744 with MUSE and Hubble Frontier Fields images. Mon. Not. R. Astron. Soc. 473, 663–692 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Richard, J. et al. An atlas of MUSE observations towards twelve massive lensing clusters. Astron. Astrophys. 646, A83 (2021).

    Article 

    Google Scholar
     

  • Bergamini, P. et al. The GLASS-JWST Early Release Science Program. III. Strong-lensing model of Abell 2744 and its infalling regions. Astrophys. J. 952, 84 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zitrin, A. et al. Lyα emission from a luminous z = 8.68 galaxy: implications for galaxies as tracers of cosmic reionization. Astrophys. J. Lett. 810, L12 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Furtak, L. J. et al. Constraining the physical properties of the first lensed z 9–16 galaxy candidates with JWST. Mon. Not. R. Astron. Soc. 519, 3064–3075 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Carnall, A. C., McLure, R. J., Dunlop, J. S. & Davé, R. Inferring the star formation histories of massive quiescent galaxies with BAGPIPES: evidence for multiple quenching mechanisms. Mon. Not. R. Astron. Soc. 480, 4379–4401 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Carnall, A. C. et al. The VANDELS survey: the star-formation histories of massive quiescent galaxies at 1.0 < z < 1.3. Mon. Not. R. Astron. Soc. 490, 417–439 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Curtis-Lake, E. et al. Spectroscopic confirmation of four metal-poor galaxies at z = 10.3–13.2. Nat. Astron. 7, 622–632 (2023).

  • Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Sánchez-Blázquez, P. et al. Medium-resolution Isaac Newton Telescope library of empirical spectra. Mon. Not. R. Astron. Soc. 371, 703–718 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Falcón-Barroso, J. et al. An updated MILES stellar library and stellar population models. Astron. Astrophys. 532, A95 (2011).

    Article 

    Google Scholar
     

  • Ferland, G. J. et al. The 2017 Release Cloudy. Rev. Mex. Astron. Astrofís. 53, 385–438 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Charlot, S. & Fall, S. M. A simple model for the absorption of starlight by dust in galaxies. Astrophys. J. 539, 718–731 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Papovich, C. et al. CEERS key paper. V. Galaxies at 4 < z < 9 are bluer than they appear–characterizing galaxy stellar populations from rest-frame 1 μm imaging. Astrophys. J. Lett. 949, L18 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Buchner, J. et al. X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue. Astron. Astrophys. 564, A125 (2014).

    Article 

    Google Scholar
     

  • Feroz, F., Hobson, M. P., Cameron, E. & Pettitt, A. N. Importance nested sampling and the MultiNest algorithm. Open J. Astrophys. 2, 10 (2019).

    Article 

    Google Scholar
     

  • Chevallard, J. & Charlot, S. Modelling and interpreting spectral energy distributions of galaxies with beagle. Mon. Not. R. Astron. Soc. 462, 1415–1443 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ferland, G. J. et al. The 2013 Release of Cloudy. Rev. Mex. Astron. Astrofís. 49, 137–163 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Gutkin, J., Charlot, S. & Bruzual, G. Modelling the nebular emission from primeval to present-day star-forming galaxies. Mon. Not. R. Astron. Soc. 462, 1757–1774 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pacific 115, 763–795 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Pei, Y. C. Interstellar dust from the Milky Way to the magellanic clouds. Astrophys. J. 395, 130–139 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Inoue, A. K., Shimizu, I., Iwata, I. & Tanaka, M. An updated analytic model for attenuation by the intergalactic medium. Mon. Not. R. Astron. Soc. 442, 1805–1820 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Roberts-Borsani, G. et al. z 7 galaxies with Red Spitzer/IRAC [3.6]–[4.5] colors in the full CANDELS data set: the brightest-known galaxies at z  7–9 and a probable spectroscopic confirmation at z = 7.48. Astrophys. J. 823, 143 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Trenti, M. & Stiavelli, M. Cosmic variance and its effect on the luminosity function determination in deep high-z surveys. Astrophys. J. 676, 767–780 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Leitherer, C. & Heckman, T. M. Synthetic properties of starburst galaxies. Astrophys. J. Suppl. Ser. 96, 9 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Osterbrock, D. E. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (Univ. Science Books, 1989).

  • Atek, H. et al. The star formation burstiness and ionizing efficiency of low-mass galaxies. Mon. Not. R. Astron. Soc. 511, 4464–4479 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bouwens, R. J. et al. The Lyman-continuum photon production efficiency ξion of z ~ 4–5 galaxies from IRAC-based Hα measurements: implications for the escape fraction and cosmic reionization. Astrophys. J. 831, 176 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Matthee, J. et al. The production and escape of Lyman-continuum radiation from star-forming galaxies at z ~ 2 and their redshift evolution. Mon. Not. R. Astron. Soc. 465, 3637–3655 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nanayakkara, T. et al. Reconstructing the observed ionizing photon production efficiency at z ~ 2 using stellar population models. Astrophys. J. 889, 180 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Matthee, J. et al. EIGER. II. First spectroscopic characterization of the young stars and ionized gas associated with strong Hβ and [O III] line emission in galaxies at z = 5–7 with JWST. Astrophys. J. 950, 67 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Sun, F. et al. First sample of Hα+[O III]λ5007 line emitters at z > 6 through JWST/NIRCam slitless spectroscopy: physical properties and line-luminosity functions. Astrophys. J. 953, 53 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Tang, M. et al. JWST/NIRSpec spectroscopy of z = 7–9 star-forming galaxies with CEERS: new insight into bright Lyα emitters in ionized bubbles. Mon. Not. R. Astron. Soc. 526, 1657–1686 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Saxena, A. et al. JADES: The production and escape of ionizing photons from faint Lyman-alpha emitters in the epoch of reionization. Preprint at https://doi.org/10.48550/arXiv.2306.04536 (2023).

  • Prieto-Lyon, G. et al. The production of ionizing photons in UV-faint z ~ 3–7 galaxies. Astron. Astrophys. 672, A186 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Flury, S. R. et al. The low-redshift Lyman Continuum Survey. I. New, diverse local Lyman continuum emitters. Astrophys. J. Suppl. Ser. 260, 1 (2022).

  • Nakajima, K. et al. EMPRESS. V. Metallicity diagnostics of galaxies over 12 + log(O/H) 6.9–8.9 established by a local galaxy census: preparing for JWST spectroscopy. Astrophys. J. Suppl. Ser. 262, 3 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Nakajima, K. et al. EMPRESS. V. Metallicity diagnostics of galaxies over 12 + log(O/H) = 6.9–8.9 established by a local galaxy census: preparing for JWST spectroscopy. Astrophys. J. Suppl. Ser. 262, 3 (2022).

  • Sanders, R. L. et al. The MOSDEF survey: the evolution of the mass-metallicity relation from z = 0 to z 3.3. Astrophys. J. 914, 19 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sanders, R. L., Shapley, A. E., Topping, M. W., Reddy, N. A. & Brammer, G. B. Direct Te-based metallicities of z = 2–9 galaxies with JWST/NIRSpec: empirical metallicity calibrations applicable from reionization to cosmic noon. Preprint at https://doi.org/10.48550/arXiv.2303.08149 (2023).

  • Stanway, E. R. & Eldridge, J. J. Initial mass function variations cannot explain the ionizing spectrum of low metallicity starbursts. Astron. Astrophys. 621, A105 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sérsic, J. L. Influence of the atmospheric and instrumental dispersion on the brightness distribution in a galaxy. Bol. Asoci. Argentina Astron. Plata Argentina 6, 41–43 (1963).

    ADS 

    Google Scholar
     

  • Pasha, I. & Miller, T. B. pysersic: a Python package for determining galaxy structural properties via Bayesian inference, accelerated with jax. J. Open Source Software 8, 5703 (2023).

  • Hoffman, M. D. & Gelman, A. et al. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15, 1593–1623 (2014).

    MathSciNet 

    Google Scholar
     

  • Phan, D., Pradhan, N. & Jankowiak, M. Composable effects for flexible and accelerated probabilistic programming in NumPyro. Preprint at https://arxiv.org/abs/1912.11554 (2019).

  • Holwerda, B. W. et al. The sizes of candidate z ~ 9-10 galaxies: confirmation of the bright CANDELS sample and relation with luminosity and mass. Astrophys. J. 808, 6 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Ferrara, A., Pallottini, A. & Dayal, P. On the stunning abundance of super-early, luminous galaxies revealed by JWST. Mon. Not. R. Astron. Soc. 522, 3986–3991 (2023).

  • Astropy Collaboration. et al. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).

    Article 

    Google Scholar
     

  • Astropy Collaboration. et al. The Astropy Project: building an open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article 

    Google Scholar
     

  • Brammer, G. msaexp: NIRSpec analyis tools. Zenodo https://zenodo.org/records/8314675 (2022).

  • Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoffman, M. D. & Gelman, A. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Preprint at https://doi.org/10.48550/arXiv.1111.4246 (2011).

  • Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • [ad_2]

    Source link