Biogeographic response of marine plankton to Cenozoic environmental changes

[ad_1]

  • Woodhouse, A., Swain, A., Fagan, W. F., Fraass, A. J. & Lowery, C. M. Late Cenozoic cooling restructured global marine plankton communities. Nature 614, 713–718 (2023).

  • Fenton, I. S., Aze, T., Farnsworth, A., Valdes, P. & Saupe, E. E. Origination of the modern-style diversity gradient 15 million years ago. Nature 614, 708–712 (2023).

  • Jablonski, D., Roy, K. & Valentine, J. W. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314, 102–106 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fenton, I. S. et al. Triton, a new species-level database of Cenozoic planktonic foraminiferal occurrences. Sci. Data 8, 160 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sibert, E. C. & Rubin, L. D. An early Miocene extinction in pelagic sharks. Science 372, 1105–1107 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jonkers, L., Hillebrand, H. & Kucera, M. Global change drives modern plankton communities away from the pre-industrial state. Nature 570, 372–375 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benedetti, F. et al. Major restructuring of marine plankton assemblages under global warming. Nat. Commun. 12, 5226 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yasuhara, M. et al. Past and future decline of tropical pelagic biodiversity. Proc. Natl Acad. Sci. USA 117, 12891–12896 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fenton, I. S., Pearson, P. N., Dunkley Jones, T. & Purvis, A. Environmental predictors of diversity in recent planktonic foraminifera as recorded in marine sediments. PLoS ONE 11, e0165522 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fenton, I. S. et al. The impact of Cenozoic cooling on assemblage diversity in planktonic foraminifera. Philos. Trans. R. Soc. B 371, 20150224 (2016).

    Article 

    Google Scholar
     

  • Raja, N. B. & Kiessling, W. Out of the extratropics: the evolution of the latitudinal diversity gradient of Cenozoic marine plankton. Proc. R. Soc. B 288, 20210545 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brodie, J. F. & Mannion, P. D. The hierarchy of factors predicting the latitudinal diversity gradient. Trends Ecol. Evol. 38, 15–23 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Chaudhary, C., Saeedi, H. & Costello, M. J. Bimodality of latitudinal gradients in marine species richness. Trends Ecol. Evol. 31, 670–676 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Aze, T. et al. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biol. Rev. 86, 900–927 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edie, S. M., Jablonski, D. & Valentine, J. W. Contrasting responses of functional diversity to major losses in taxonomic diversity. Proc. Natl Acad. Sci. USA 115, 732–737 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pörtner, H.-O. et al. in Climate Change 2022: Impacts, Adaptation, and Vulnerability (IPCC, Cambridge Univ. Press, 2022).

  • Jones, H. L., Lowery, C. M. & Bralower, T. J. Delayed calcareous nannoplankton boom-bust successions in the earliest Paleocene Chicxulub (Mexico) impact crater. Geology 47, 753–756 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kirchner, J. W. & Weil, A. Delayed biological recovery from extinctions throughout the fossil record. Nature 404, 177–180 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lowery, C. M. & Fraass, A. J. Morphospace expansion paces taxonomic diversification after end Cretaceous mass extinction. Nat. Ecol. Evol. 3, 900–904 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Lowery, C. M., Bown, P. R., Fraass, A. J. & Hull, P. M. Ecological response of plankton to environmental change: thresholds for extinction. Annu. Rev. Earth Planet. Sci. 48, 403–429 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Birch, H. S., Coxall, H. K., Pearson, P. N., Kroon, D. & Schmidt, D. N. Partial collapse of the marine carbon pump after the Cretaceous-Paleogene boundary. Geology 44, 287–290 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Birch, H., Schmidt, D. N., Coxall, H. K., Kroon, D. & Ridgwell, A. Ecosystem function after the K/Pg extinction: decoupling of marine carbon pump and diversity. Proc. R. Soc. B 288, 20210863 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alvarez, S. A. et al. Diversity decoupled from ecosystem function and resilience during mass extinction recovery. Nature 574, 242–245 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gibbs, S. J. et al. Algal plankton turn to hunting to survive and recover from end-Cretaceous impact darkness. Sci. Adv. 6, eabc9123 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Birch, H. S., Coxall, H. K. & Pearson, P. N. Evolutionary ecology of Early Paleocene planktonic foraminifera: size, depth, habitat and symbiosis. Paleobiology 38, 374–390 (2012).

    Article 

    Google Scholar
     

  • Pearson, P. N., John, E., Wade, B. S., D’haenens, S. & Lear, C. H. Spine-like structures in Paleogene muricate planktonic foraminifera. J. Micropalaeontol. 41, 107–127 (2022).

    Article 

    Google Scholar
     

  • Coxall, H. K., D’Hondt, S. & Zachos, J. C. Pelagic evolution and environmental recovery after the Cretaceous-Paleogene mass extinction. Geology 34, 297–300 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Quillévéré, F., Norris, R. D., Moussa, I. & Berggren, W. A. Role of photosymbiosis and biogeography in the diversification of early Paleogene acarninids (planktonic foraminifera). Paleobiology 27, 311–326 (2001).

    Article 

    Google Scholar
     

  • Ezard, T. H. G., Aze, T., Pearson, P. N. & Purvis, A. Interplay between changing climate and species’ ecology drives macroevolutionary dynamics. Science 332, 349–351 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fraass, A. J., Kelly, D. C. & Peters, S. E. Macroevolutionary history of the planktic foraminifera. Annu. Rev. Earth Planet. Sci. 43, 139–166 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Huber, B. T., Petrizzo, M. R. & MacLeod, K. G. Planktonic foraminiferal endemism at southern high latitudes following the terminal Cretaceous extinction. J. Foraminiferal Res. 50, 382–402 (2020).

    Article 

    Google Scholar
     

  • Huber, B. T., MacLeod, K. G., Watkins, D. K. & Coffin, M. F. The rise and fall of the Cretaceous Hot Greenhouse climate. Global Planet. Change 167, 1–23 (2018).

    Article 

    Google Scholar
     

  • Speijer, R., Scheibner, C., Stassen, P. & Morsi, A. M. M. Response of marine ecosystems to deep-time global warming: a synthesis of biotic patterns across the Paleocene-Eocene thermal maximum (PETM). Austrian J. Earth Sci. 105, 6–16 (2012).


    Google Scholar
     

  • Aze, T. Unraveling ecological signals from a global warming event of the past. Proc. Natl Acad. Sci. USA 119, e2201495119 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silva, I. P. & Boersma, A. Atlantic Paleogene planktonic foraminiferal bioprovincial indices. Mar. Micropaleontol. 14, 357–372 (1989).

    Article 

    Google Scholar
     

  • Douglas, P. M. et al. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures. Proc. Natl Acad. Sci. USA 111, 6582–6587 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilson, J. D., Monteiro, F. M., Schmidt, D. N., Ward, B. A. & Ridgwell, A. Linking marine plankton ecosystems and climate: a new modeling approach to the warm early Eocene climate. Paleoceanogr. Paleoclimatol. 33, 1439–1452 (2018).

    Article 

    Google Scholar
     

  • John, E. H. et al. Warm ocean processes and carbon cycling in the Eocene. Philos. Trans. R. Soc. A 371, 20130099 (2013).

    Article 

    Google Scholar
     

  • Gaskell, D. E. et al. The latitudinal temperature gradient and its climate dependence as inferred from foraminiferal δ18O over the past 95 million years. Proc. Natl Acad. Sci. USA 119, e2111332119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomas, E. Descent into the Icehouse. Geology 36, 191–192 (2008).

    Article 

    Google Scholar
     

  • Schmidt, D. N., Lazarus, D., Young, J. R. & Kucera, M. Biogeography and evolution of body size in marine plankton. Earth Sci. Rev. 78, 239–266 (2006).

    Article 

    Google Scholar
     

  • Inglis, G. N. et al. Descent toward the Icehouse: Eocene sea surface cooling inferred from GDGT distributions. Paleoceanography 30, 1000–1020 (2015).

    Article 

    Google Scholar
     

  • Scher, H. D. & Martin, E. E. Timing and climatic consequences of the opening of Drake Passage. Science 312, 428–430 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Houben, A. J., Bijl, P. K., Sluijs, A., Schouten, S. & Brinkhuis, H. Late Eocene Southern Ocean cooling and invigoration of circulation preconditioned Antarctica for full‐scale glaciation. Geochem. Geophys. Geosyst. 20, 2214–2234 (2019).

    Article 

    Google Scholar
     

  • Hutchinson, D. K. et al. The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons. Clim. Past 17, 269–315 (2021).

    Article 

    Google Scholar
     

  • Rabosky, D. L. & Sorhannus, U. Diversity dynamics of marine planktonic diatoms across the Cenozoic. Nature 457, 183–186 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ladant, J. B., Donnadieu, Y., Bopp, L., Lear, C. H. & Wilson, P. A. Meridional contrasts in productivity changes driven by the opening of Drake Passage. Paleoceanogr. Paleoclimatol. 33, 302–317 (2018).

    Article 

    Google Scholar
     

  • Coxall, H. K. & Pearson, P. N. in Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies (eds Williams, M. et al.) 351–387 (The Micropalaeontological Society, 2007).

  • Śliwińska, K. K. et al. Sea surface temperature evolution of the North Atlantic Ocean across the Eocene–Oligocene transition. Clim. Past 19, 123–140 (2023).

    Article 

    Google Scholar
     

  • Boscolo-Galazzo, F. et al. Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science 371, 1148–1152 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boscolo-Galazzo, F. et al. Late Neogene evolution of modern deep-dwelling plankton. Biogeosciences 19, 743–762 (2022).

    Article 

    Google Scholar
     

  • Auderset, A. et al. Enhanced ocean oxygenation during Cenozoic warm periods. Nature 609, 77–82 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yasuhara, M. et al. Hotspots of Cenozoic tropical marine biodiversity. Oceanogr. Mar. Biol. 60, 243–300 (2022).


    Google Scholar
     

  • Kucera, M. & Schönfeld, J. in Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies (eds Williams, M. et al.) 409–425 (The Micropalaeontological Society, 2007).

  • Yasuhara, M. & Deutsch, C. A. Tropical biodiversity linked to polar climate. Nature 614, 626–628 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lam, A. R., Crundwell, M. P., Leckie, R. M., Albanese, J. & Uzel, J. P. Diachroneity rules the mid-latitudes: a test case using late Neogene planktic Foraminifera across the Western Pacific. Geosciences 12, 190 (2022).

    Article 

    Google Scholar
     

  • Scott, G. H., Bishop, S. & Burt, B. J. Guide to some Neogene Globorotalids (Foraminiferida) from New Zealand (New Zealand Geological Survey, 1990).

  • Golledge, N. R. et al. Global environmental consequences of twenty-first-century ice-sheet melt. Nature 566, 65–72 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lazarus, D. Neptune: a marine micropaleontology database. Math. Geol. 26, 817–832 (1994).

    Article 

    Google Scholar
     

  • Spencer-Cervato, C. The Cenozoic deep sea microfossil record: explorations of the DSDP/ODP sample set using the Neptune database. Palaeontol. Electron. 2, a13 (1999).


    Google Scholar
     

  • Siccha, M. & Kucera, M. ForCenS, a curated database of planktonic foraminifera census counts in marine surface sediment samples. Sci. Data 4, 170109 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Renaudie, J., Lazarus, D. B. & Diver, P. NSB (Neptune Sandbox Berlin): an expanded and improved database of marine planktonic microfossil data and deep-sea stratigraphy. Palaeontol. Electron. 23, a11 (2020).


    Google Scholar
     

  • Pearson, P. N. in Atlas of Oligocene Planktonic Foraminifera Special Publication No. 46 (eds Wade, B. S. et al.) 415–428 (Cushman Foundation of Foraminiferal Research, 2018).

  • Liow, L. H., Skaug, H. J., Ergon, T. & Schweder, T. Global occurrence trajectories of microfossils: environmental volatility and the rise and fall of individual species. Paleobiology 36, 224–252 (2010).

    Article 

    Google Scholar
     

  • Lazarus, D., Weinkauf, M. & Diver, P. Pacman profiling: a simple procedure to identify stratigraphic outliers in high-density deep-sea microfossil dataPACMAN PROFILING. Paleobiology 38, 144–161 (2012).

    Article 

    Google Scholar
     

  • Birch, H., Coxall, H. K., Pearson, P. N., Kroon, D. & O’Regan, M. Planktonic foraminifera stable isotopes and water column structure: disentangling ecological signals. Mar. Micropaleontol. 101, 127–145 (2013).

    Article 

    Google Scholar
     

  • Woodhouse, A. Evolutionary Dynamics of Cenozoic Planktonic Foraminifera: Insights from Biogeography, Geochemistry, and Morphology. PhD thesis, Univ. Leeds (2021).

  • Woodhouse, A. et al. Adaptive ecological niche migration does not negate extinction susceptibility. Sci. Rep. 11, 15411 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woodhouse, A. et al. Paleoecology and evolutionary response of planktonic foraminifera to the mid-Pliocene Warm Period and Plio-Pleistocene bipolar ice sheet expansion. Biogeosciences 20, 121–139 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Huber, B. T. et al. Pforams@ microtax. Micropaleontology 62, 429–438 (2016).

    Article 

    Google Scholar
     

  • Young, J. R. et al. Mikrotax: developing a genuinely effective platform for palaeontological geoinformatics. Acta Geolog. Sin. 93, 70–72 (2019).

    Article 

    Google Scholar
     

  • Yasuhara, M. & Deutsch, C. A. Tropical biodiversity linked to polar climate. Nature 614, 626–628 (2023).

  • Cifelli, R. Radiation of Cenozoic planktonic foraminifera. Syst. Zool. 18, 154–168 (1969).

    Article 

    Google Scholar
     

  • Cita, M. B. & Premoli Silva, I. P. Planktonic foraminifers as ecologic indicators. Examples from the fossil record of the Mediterranean Sea and of the Atlantic Ocean. Ital. J. Zool. 45, 115–131 (1978).


    Google Scholar
     

  • Swain, A., Maccracken, S. A., Fagan, W. F. & Labandeira, C. C. Understanding the ecology of host plant–insect herbivore interactions in the fossil record through bipartite networks. Paleobiology 48, 239–260 (2021).

  • Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).

    Article 

    Google Scholar
     

  • Dormann, C. F., Fründ, J., Blüthgen, N. & Gruber, B. Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol. J. 2, 7–24 (2009).

  • Julliard, R., Clavel, J., Devictor, V., Jiguet, F. & Couvet, D. Spatial segregation of specialists and generalists in bird communities. Ecol. Lett. 9, 1237–1244 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Poisot, T., Canard, E., Mouquet, N. & Hochberg, M. E. A comparative study of ecological specialization estimators. Methods Ecol. Evol. 3, 537–544 (2012).

    Article 

    Google Scholar
     

  • Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).

    Article 

    Google Scholar
     

  • Swain, A. et al. Sampling bias and the robustness of ecological metrics for plant–damage‐type association networks. Ecology 104, e3922 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Swain, A. Biogeographic patterns in Cenozoic foram functional groups. Zenodo https://doi.org/10.5281/zenodo.7888565 (2023).

  • [ad_2]

    Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Related Posts