[ad_1]
Woodhouse, A., Swain, A., Fagan, W. F., Fraass, A. J. & Lowery, C. M. Late Cenozoic cooling restructured global marine plankton communities. Nature 614, 713–718 (2023).
Fenton, I. S., Aze, T., Farnsworth, A., Valdes, P. & Saupe, E. E. Origination of the modern-style diversity gradient 15 million years ago. Nature 614, 708–712 (2023).
Jablonski, D., Roy, K. & Valentine, J. W. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314, 102–106 (2006).
Fenton, I. S. et al. Triton, a new species-level database of Cenozoic planktonic foraminiferal occurrences. Sci. Data 8, 160 (2021).
Sibert, E. C. & Rubin, L. D. An early Miocene extinction in pelagic sharks. Science 372, 1105–1107 (2021).
Jonkers, L., Hillebrand, H. & Kucera, M. Global change drives modern plankton communities away from the pre-industrial state. Nature 570, 372–375 (2019).
Benedetti, F. et al. Major restructuring of marine plankton assemblages under global warming. Nat. Commun. 12, 5226 (2021).
Yasuhara, M. et al. Past and future decline of tropical pelagic biodiversity. Proc. Natl Acad. Sci. USA 117, 12891–12896 (2020).
Fenton, I. S., Pearson, P. N., Dunkley Jones, T. & Purvis, A. Environmental predictors of diversity in recent planktonic foraminifera as recorded in marine sediments. PLoS ONE 11, e0165522 (2016).
Fenton, I. S. et al. The impact of Cenozoic cooling on assemblage diversity in planktonic foraminifera. Philos. Trans. R. Soc. B 371, 20150224 (2016).
Raja, N. B. & Kiessling, W. Out of the extratropics: the evolution of the latitudinal diversity gradient of Cenozoic marine plankton. Proc. R. Soc. B 288, 20210545 (2021).
Brodie, J. F. & Mannion, P. D. The hierarchy of factors predicting the latitudinal diversity gradient. Trends Ecol. Evol. 38, 15–23 (2023).
Chaudhary, C., Saeedi, H. & Costello, M. J. Bimodality of latitudinal gradients in marine species richness. Trends Ecol. Evol. 31, 670–676 (2016).
Aze, T. et al. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biol. Rev. 86, 900–927 (2011).
Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).
Edie, S. M., Jablonski, D. & Valentine, J. W. Contrasting responses of functional diversity to major losses in taxonomic diversity. Proc. Natl Acad. Sci. USA 115, 732–737 (2018).
Pörtner, H.-O. et al. in Climate Change 2022: Impacts, Adaptation, and Vulnerability (IPCC, Cambridge Univ. Press, 2022).
Jones, H. L., Lowery, C. M. & Bralower, T. J. Delayed calcareous nannoplankton boom-bust successions in the earliest Paleocene Chicxulub (Mexico) impact crater. Geology 47, 753–756 (2019).
Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).
Kirchner, J. W. & Weil, A. Delayed biological recovery from extinctions throughout the fossil record. Nature 404, 177–180 (2000).
Lowery, C. M. & Fraass, A. J. Morphospace expansion paces taxonomic diversification after end Cretaceous mass extinction. Nat. Ecol. Evol. 3, 900–904 (2019).
Lowery, C. M., Bown, P. R., Fraass, A. J. & Hull, P. M. Ecological response of plankton to environmental change: thresholds for extinction. Annu. Rev. Earth Planet. Sci. 48, 403–429 (2020).
Birch, H. S., Coxall, H. K., Pearson, P. N., Kroon, D. & Schmidt, D. N. Partial collapse of the marine carbon pump after the Cretaceous-Paleogene boundary. Geology 44, 287–290 (2016).
Birch, H., Schmidt, D. N., Coxall, H. K., Kroon, D. & Ridgwell, A. Ecosystem function after the K/Pg extinction: decoupling of marine carbon pump and diversity. Proc. R. Soc. B 288, 20210863 (2021).
Alvarez, S. A. et al. Diversity decoupled from ecosystem function and resilience during mass extinction recovery. Nature 574, 242–245 (2019).
Gibbs, S. J. et al. Algal plankton turn to hunting to survive and recover from end-Cretaceous impact darkness. Sci. Adv. 6, eabc9123 (2020).
Birch, H. S., Coxall, H. K. & Pearson, P. N. Evolutionary ecology of Early Paleocene planktonic foraminifera: size, depth, habitat and symbiosis. Paleobiology 38, 374–390 (2012).
Pearson, P. N., John, E., Wade, B. S., D’haenens, S. & Lear, C. H. Spine-like structures in Paleogene muricate planktonic foraminifera. J. Micropalaeontol. 41, 107–127 (2022).
Coxall, H. K., D’Hondt, S. & Zachos, J. C. Pelagic evolution and environmental recovery after the Cretaceous-Paleogene mass extinction. Geology 34, 297–300 (2006).
Quillévéré, F., Norris, R. D., Moussa, I. & Berggren, W. A. Role of photosymbiosis and biogeography in the diversification of early Paleogene acarninids (planktonic foraminifera). Paleobiology 27, 311–326 (2001).
Ezard, T. H. G., Aze, T., Pearson, P. N. & Purvis, A. Interplay between changing climate and species’ ecology drives macroevolutionary dynamics. Science 332, 349–351 (2011).
Fraass, A. J., Kelly, D. C. & Peters, S. E. Macroevolutionary history of the planktic foraminifera. Annu. Rev. Earth Planet. Sci. 43, 139–166 (2015).
Huber, B. T., Petrizzo, M. R. & MacLeod, K. G. Planktonic foraminiferal endemism at southern high latitudes following the terminal Cretaceous extinction. J. Foraminiferal Res. 50, 382–402 (2020).
Huber, B. T., MacLeod, K. G., Watkins, D. K. & Coffin, M. F. The rise and fall of the Cretaceous Hot Greenhouse climate. Global Planet. Change 167, 1–23 (2018).
Speijer, R., Scheibner, C., Stassen, P. & Morsi, A. M. M. Response of marine ecosystems to deep-time global warming: a synthesis of biotic patterns across the Paleocene-Eocene thermal maximum (PETM). Austrian J. Earth Sci. 105, 6–16 (2012).
Aze, T. Unraveling ecological signals from a global warming event of the past. Proc. Natl Acad. Sci. USA 119, e2201495119 (2022).
Silva, I. P. & Boersma, A. Atlantic Paleogene planktonic foraminiferal bioprovincial indices. Mar. Micropaleontol. 14, 357–372 (1989).
Douglas, P. M. et al. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures. Proc. Natl Acad. Sci. USA 111, 6582–6587 (2014).
Wilson, J. D., Monteiro, F. M., Schmidt, D. N., Ward, B. A. & Ridgwell, A. Linking marine plankton ecosystems and climate: a new modeling approach to the warm early Eocene climate. Paleoceanogr. Paleoclimatol. 33, 1439–1452 (2018).
John, E. H. et al. Warm ocean processes and carbon cycling in the Eocene. Philos. Trans. R. Soc. A 371, 20130099 (2013).
Gaskell, D. E. et al. The latitudinal temperature gradient and its climate dependence as inferred from foraminiferal δ18O over the past 95 million years. Proc. Natl Acad. Sci. USA 119, e2111332119 (2022).
Thomas, E. Descent into the Icehouse. Geology 36, 191–192 (2008).
Schmidt, D. N., Lazarus, D., Young, J. R. & Kucera, M. Biogeography and evolution of body size in marine plankton. Earth Sci. Rev. 78, 239–266 (2006).
Inglis, G. N. et al. Descent toward the Icehouse: Eocene sea surface cooling inferred from GDGT distributions. Paleoceanography 30, 1000–1020 (2015).
Scher, H. D. & Martin, E. E. Timing and climatic consequences of the opening of Drake Passage. Science 312, 428–430 (2006).
Houben, A. J., Bijl, P. K., Sluijs, A., Schouten, S. & Brinkhuis, H. Late Eocene Southern Ocean cooling and invigoration of circulation preconditioned Antarctica for full‐scale glaciation. Geochem. Geophys. Geosyst. 20, 2214–2234 (2019).
Hutchinson, D. K. et al. The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons. Clim. Past 17, 269–315 (2021).
Rabosky, D. L. & Sorhannus, U. Diversity dynamics of marine planktonic diatoms across the Cenozoic. Nature 457, 183–186 (2009).
Ladant, J. B., Donnadieu, Y., Bopp, L., Lear, C. H. & Wilson, P. A. Meridional contrasts in productivity changes driven by the opening of Drake Passage. Paleoceanogr. Paleoclimatol. 33, 302–317 (2018).
Coxall, H. K. & Pearson, P. N. in Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies (eds Williams, M. et al.) 351–387 (The Micropalaeontological Society, 2007).
Śliwińska, K. K. et al. Sea surface temperature evolution of the North Atlantic Ocean across the Eocene–Oligocene transition. Clim. Past 19, 123–140 (2023).
Boscolo-Galazzo, F. et al. Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science 371, 1148–1152 (2021).
Boscolo-Galazzo, F. et al. Late Neogene evolution of modern deep-dwelling plankton. Biogeosciences 19, 743–762 (2022).
Auderset, A. et al. Enhanced ocean oxygenation during Cenozoic warm periods. Nature 609, 77–82 (2022).
Yasuhara, M. et al. Hotspots of Cenozoic tropical marine biodiversity. Oceanogr. Mar. Biol. 60, 243–300 (2022).
Kucera, M. & Schönfeld, J. in Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies (eds Williams, M. et al.) 409–425 (The Micropalaeontological Society, 2007).
Yasuhara, M. & Deutsch, C. A. Tropical biodiversity linked to polar climate. Nature 614, 626–628 (2023).
Lam, A. R., Crundwell, M. P., Leckie, R. M., Albanese, J. & Uzel, J. P. Diachroneity rules the mid-latitudes: a test case using late Neogene planktic Foraminifera across the Western Pacific. Geosciences 12, 190 (2022).
Scott, G. H., Bishop, S. & Burt, B. J. Guide to some Neogene Globorotalids (Foraminiferida) from New Zealand (New Zealand Geological Survey, 1990).
Golledge, N. R. et al. Global environmental consequences of twenty-first-century ice-sheet melt. Nature 566, 65–72 (2019).
Lazarus, D. Neptune: a marine micropaleontology database. Math. Geol. 26, 817–832 (1994).
Spencer-Cervato, C. The Cenozoic deep sea microfossil record: explorations of the DSDP/ODP sample set using the Neptune database. Palaeontol. Electron. 2, a13 (1999).
Siccha, M. & Kucera, M. ForCenS, a curated database of planktonic foraminifera census counts in marine surface sediment samples. Sci. Data 4, 170109 (2017).
Renaudie, J., Lazarus, D. B. & Diver, P. NSB (Neptune Sandbox Berlin): an expanded and improved database of marine planktonic microfossil data and deep-sea stratigraphy. Palaeontol. Electron. 23, a11 (2020).
Pearson, P. N. in Atlas of Oligocene Planktonic Foraminifera Special Publication No. 46 (eds Wade, B. S. et al.) 415–428 (Cushman Foundation of Foraminiferal Research, 2018).
Liow, L. H., Skaug, H. J., Ergon, T. & Schweder, T. Global occurrence trajectories of microfossils: environmental volatility and the rise and fall of individual species. Paleobiology 36, 224–252 (2010).
Lazarus, D., Weinkauf, M. & Diver, P. Pacman profiling: a simple procedure to identify stratigraphic outliers in high-density deep-sea microfossil dataPACMAN PROFILING. Paleobiology 38, 144–161 (2012).
Birch, H., Coxall, H. K., Pearson, P. N., Kroon, D. & O’Regan, M. Planktonic foraminifera stable isotopes and water column structure: disentangling ecological signals. Mar. Micropaleontol. 101, 127–145 (2013).
Woodhouse, A. Evolutionary Dynamics of Cenozoic Planktonic Foraminifera: Insights from Biogeography, Geochemistry, and Morphology. PhD thesis, Univ. Leeds (2021).
Woodhouse, A. et al. Adaptive ecological niche migration does not negate extinction susceptibility. Sci. Rep. 11, 15411 (2021).
Woodhouse, A. et al. Paleoecology and evolutionary response of planktonic foraminifera to the mid-Pliocene Warm Period and Plio-Pleistocene bipolar ice sheet expansion. Biogeosciences 20, 121–139 (2023).
Huber, B. T. et al. Pforams@ microtax. Micropaleontology 62, 429–438 (2016).
Young, J. R. et al. Mikrotax: developing a genuinely effective platform for palaeontological geoinformatics. Acta Geolog. Sin. 93, 70–72 (2019).
Yasuhara, M. & Deutsch, C. A. Tropical biodiversity linked to polar climate. Nature 614, 626–628 (2023).
Cifelli, R. Radiation of Cenozoic planktonic foraminifera. Syst. Zool. 18, 154–168 (1969).
Cita, M. B. & Premoli Silva, I. P. Planktonic foraminifers as ecologic indicators. Examples from the fossil record of the Mediterranean Sea and of the Atlantic Ocean. Ital. J. Zool. 45, 115–131 (1978).
Swain, A., Maccracken, S. A., Fagan, W. F. & Labandeira, C. C. Understanding the ecology of host plant–insect herbivore interactions in the fossil record through bipartite networks. Paleobiology 48, 239–260 (2021).
Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).
Dormann, C. F., Fründ, J., Blüthgen, N. & Gruber, B. Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol. J. 2, 7–24 (2009).
Julliard, R., Clavel, J., Devictor, V., Jiguet, F. & Couvet, D. Spatial segregation of specialists and generalists in bird communities. Ecol. Lett. 9, 1237–1244 (2006).
Poisot, T., Canard, E., Mouquet, N. & Hochberg, M. E. A comparative study of ecological specialization estimators. Methods Ecol. Evol. 3, 537–544 (2012).
Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).
Swain, A. et al. Sampling bias and the robustness of ecological metrics for plant–damage‐type association networks. Ecology 104, e3922 (2023).
Swain, A. Biogeographic patterns in Cenozoic foram functional groups. Zenodo https://doi.org/10.5281/zenodo.7888565 (2023).
[ad_2]
Source link