Drug targeting in psychiatric disorders — how to overcome the loss in translation?

  • Howes, O. D. & Baxter, L. The drug treatment deadlock in psychiatry and the route forward. World Psychiatry 22, 2–3 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marder, S. R., Laughren, T. & Romano, S. J. Why are innovative drugs failing in phase III? Am. J. Psychiatry 174, 829–831 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Spark, D. L., Fornito, A., Langmead, C. J. & Stewart, G. D. Beyond antipsychotics: a twenty-first century update for preclinical development of schizophrenia therapeutics. Transl. Psychiatry 12, 147 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tricklebank, M. D., Robbins, T. W., Simmons, C. & Wong, E. H. F. Time to re-engage psychiatric drug discovery by strengthening confidence in preclinical psychopharmacology. Psychopharmacology 238, 1417–1436 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Correll, C. U. et al. The future of psychopharmacology: a critical appraisal of ongoing phase 2/3 trials, and of some current trends aiming to de-risk trial programmes of novel agents. World Psychiatry 22, 48–74 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krystal, A. D. et al. The first implementation of the NIMH FAST-FAIL approach to psychiatric drug development. Nat. Rev. Drug. Discov. 18, 82–84 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarter, M. & Tricklebank, M. Revitalizing psychiatric drug discovery. Nat. Rev. Drug. Discov. 11, 423–424 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 598, 111–119 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao, Z. et al. A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation. Cell 184, 3222–3241.e26 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gouwens, N. W. et al. Integrated morphoelectric and transcriptomic classification of cortical GABAergic cells. Cell 183, 935–953.e19 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scala, F. et al. Phenotypic variation of transcriptomic cell types in mouse motor cortex. Nature 598, 144–150 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clark, I. C. et al. Barcoded viral tracing of single-cell interactions in central nervous system inflammation. Science 372, eabf1230 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Albert, P. R. & Le François, B. Modifying 5-HT1A receptor gene expression as a new target for antidepressant therapy. Front. Neurosci. 4, 35 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Negi, S. K. & Guda, C. Global gene expression profiling of healthy human brain and its application in studying neurological disorders. Sci. Rep. 7, 897 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sjöstedt, E. et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 367, eaay5947 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Siletti, K. et al. Transcriptomic diversity of cell types across the adult human brain. Science 382, eadd7046 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sinkeviciute, I. et al. Efficacy of different types of cognitive enhancers for patients with schizophrenia: a meta-analysis. NPJ Schizophr. 4, 22 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidt, E. R. E. et al. A human-specific modifier of cortical connectivity and circuit function. Nature 599, 640–644 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Defelipe, J. The evolution of the brain, the human nature of cortical circuits, and intellectual creativity. Front. Neuroanat. 5, 29 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sousa, A. M. M., Meyer, K. A., Santpere, G., Gulden, F. O. & Sestan, N. Evolution of the human nervous system function, structure, and development. Cell 170, 226–247 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lake, B. B. et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat. Biotechnol. 36, 70–80 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Franjic, D. et al. Transcriptomic taxonomy and neurogenic trajectories of adult human, macaque, and pig hippocampal and entorhinal cells. Neuron 110, 452–469.e14 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jorstad, N. L. et al. Transcriptomic cytoarchitecture reveals principles of human neocortex organization. Science 382, eadf6812 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agarwal, D. et al. A single-cell atlas of the human substantia nigra reveals cell-specific pathways associated with neurological disorders. Nat. Commun. 11, 4182 (2020).

    Article 

    Google Scholar
     

  • Tran, M. N. et al. Single-nucleus transcriptome analysis reveals cell-type-specific molecular signatures across reward circuitry in the human brain. Neuron 109, 3088–3103.e5 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sorrells, S. F. et al. Immature excitatory neurons develop during adolescence in the human amygdala. Nat. Commun. 10, 2748 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Masuda, T. et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566, 388–392 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Winkler, E. A. et al. A single-cell atlas of the normal and malformed human brain vasculature. Science 375, eabi7377 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Batiuk, M. Y. et al. Upper cortical layer-driven network impairment in schizophrenia. Sci. Adv. 8, eabn8367 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haney, J. R. et al. Broad transcriptomic dysregulation across the cerebral cortex in ASD. Nature 611, 532–539 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagy, C. et al. Single-nucleus transcriptomics of the prefrontal cortex in major depressive disorder implicates oligodendrocyte precursor cells and excitatory neurons. Nat. Neurosci. 23, 771–781 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Howes, O. D., Thase, M. E. & Pillinger, T. Treatment resistance in psychiatry: state of the art and new directions. Mol. Psychiatry 27, 58–72 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Planert, H. et al. Cellular and synaptic diversity of layer 2-3 pyramidal neurons in human individuals. Preprint at https://doi.org/10.1101/2021.11.08.467668 (2023).

  • Johansen, N. et al. Interindividual variation in human cortical cell type abundance and expression. Science 382, eadf2359 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Asp, M., Bergenstråhle, J. & Lundeberg, J. Spatially resolved transcriptomes—next generation tools for tissue exploration. BioEssays 42, 1900221 (2020).

    Article 

    Google Scholar
     

  • Fang, R. et al. Conservation and divergence of cortical cell organization in human and mouse revealed by MERFISH. Science 377, 56–62 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pfisterer, U. et al. Identification of epilepsy-associated neuronal subtypes and gene expression underlying epileptogenesis. Nat. Commun. 11, 5038 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petukhov, V. et al. Case-control analysis of single-cell RNA-seq studies. Preprint at https://doi.org/10.1101/2022.03.15.484475 (2022).

  • Fischer, D. S., Schaar, A. C. & Theis, F. J. Modeling intercellular communication in tissues using spatial graphs of cells. Nat. Biotechnol. 41, 332–336 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Campagnola, L. et al. Local connectivity and synaptic dynamics in mouse and human neocortex. Science 375, eabj5861 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berg, J. et al. Human neocortical expansion involves glutamatergic neuron diversification. Nature 598, 151–158 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalmbach, B. E. et al. Signature morpho-electric, transcriptomic, and dendritic properties of human layer 5 neocortical pyramidal neurons. Neuron 109, 2914–2927.e5 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, B. R. et al. Signature morphoelectric properties of diverse GABAergic interneurons in the human neocortex. Science 382, eadf6484 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Artigas, F. et al. Defining the brain circuits involved in psychiatric disorders: IMI-NEWMEDS. Nat. Rev. Drug. Discov. 16, 1–2 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Krystal, A. D. et al. A randomized proof-of-mechanism trial applying the ‘fast-fail’ approach to evaluating κ-opioid antagonism as a treatment for anhedonia. Nat. Med. 26, 760–768 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perkel, J. M. Single-cell analysis enters the multiomics age. Nature 595, 614–616 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kharchenko, P. V. The triumphs and limitations of computational methods for scRNA-seq. Nat. Methods 18, 723–732 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • No authors listed.Method of the Year 2019: single-cell multimodal omics. Nat. Methods 17, 1 (2020).

    Article 

    Google Scholar
     

  • Yuste, R. et al. A community-based transcriptomics classification and nomenclature of neocortical cell types. Nat. Neurosci. 23, 1456–1468 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhaduri, A. et al. An atlas of cortical arealization identifies dynamic molecular signatures. Nature 598, 200–204 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Callaway, E. M. et al. A multimodal cell census and atlas of the mammalian primary motor cortex. Nature 598, 86–102 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ziffra, R. S. et al. Single-cell epigenomics reveals mechanisms of human cortical development. Nature 598, 205–213 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong, S. et al. Decoding the development of the human hippocampus. Nature 577, 531–536 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Regev, A. et al. The human cell atlas. eLife 6, e27041 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herring, C. A. et al. Human prefrontal cortex gene regulatory dynamics from gestation to adulthood at single-cell resolution. Cell 185, 4428–4447.e28 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wheeler, M. A. et al. MAFG-driven astrocytes promote CNS inflammation. Nature 578, 593–599 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, A. C. et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature 595, 565–571 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji, A. L. et al. Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma. Cell 182, 497–514.e22 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, W. T. et al. Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. Cell 182, 976–991.e19 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. E. et al. An atlas of gene regulatory elements in adult mouse cerebrum. Nature 598, 129–136 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kozareva, V. et al. A transcriptomic atlas of mouse cerebellar cortex comprehensively defines cell types. Nature 598, 214–219 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, M. et al. Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH. Nature 598, 137–143 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Bella, D. J. et al. Molecular logic of cellular diversification in the mouse cerebral cortex. Nature 595, 554–559 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • La Manno, G. et al. Molecular architecture of the developing mouse brain. Nature 596, 92–96 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Romanov, R. A. et al. Molecular design of hypothalamus development. Nature 582, 246–252 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014.e22 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lui, J. H. et al. Differential encoding in prefrontal cortex projection neuron classes across cognitive tasks. Cell 184, 489–506.e26 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malwade, S. et al. Identification of vulnerable interneuron subtypes in 15q13.3 microdeletion syndrome using single-cell transcriptomics. Biol. Psychiatry 91, 727–739 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gouwens, N. W. et al. Classification of electrophysiological and morphological neuron types in the mouse visual cortex. Nat. Neurosci. 22, 1182–1195 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joglekar, A. et al. A spatially resolved brain region- and cell type-specific isoform atlas of the postnatal mouse brain. Nat. Commun. 12, 463 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bandler, R. C. et al. Single-cell delineation of lineage and genetic identity in the mouse brain. Nature 601, 404–409 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng, H. et al. Morphological diversity of single neurons in molecularly defined cell types. Nature 598, 174–181 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, H. et al. DNA methylation atlas of the mouse brain at single-cell resolution. Nature 598, 120–128 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao, Z. et al. A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex. Nature 598, 103–110 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krienen, F. M. et al. Innovations present in the primate interneuron repertoire. Nature 586, 262–269 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bakken, T. E. et al. Single-cell and single-nucleus RNA-seq uncovers shared and distinct axes of variation in dorsal LGN neurons in mice, non-human primates, and humans. eLife 10, e64875 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borm, L. E. et al. Scalable in situ single-cell profiling by electrophoretic capture of mRNA using EEL FISH. Nat. Biotechnol. 41, 222–231 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, Y. et al. Interneuron origin and molecular diversity in the human fetal brain. Nat. Neurosci. 24, 1745–1756 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, Y. et al. Mouse and human share conserved transcriptional programs for interneuron development. Science 374, eabj6641 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eze, U. C., Bhaduri, A., Haeussler, M., Nowakowski, T. J. & Kriegstein, A. R. Single-cell atlas of early human brain development highlights heterogeneity of human neuroepithelial cells and early radial glia. Nat. Neurosci. 24, 584–594 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Close, J. L. et al. Single-cell profiling of an in vitro model of human interneuron development reveals temporal dynamics of cell type production and maturation. Neuron 93, 1035–1048 e5 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • La Manno, G. et al. Molecular diversity of midbrain development in mouse, human, and stem cells. Cell 167, 566–580.e19 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samudyata et al. SARS-CoV-2 promotes microglial synapse elimination in human brain organoids. Mol. Psychiatry 27, 3939–3950 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, S. M., Michel, K., Jokhi, V., Nedivi, E. & Arlotta, P. Neuron class-specific responses govern adaptive myelin remodeling in the neocortex. Science 370, eabd2109 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hao, Z.-Z. et al. Single-cell transcriptomics of adult macaque hippocampus reveals neural precursor cell populations. Nat. Neurosci. 25, 805–817 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lei, Y. et al. Spatially resolved gene regulatory and disease-related vulnerability map of the adult macaque cortex. Nat. Commun. 13, 1–20 (2022).

    Article 

    Google Scholar
     

  • Khodosevich, K. & Sellgren, C. M. Neurodevelopmental disorders—high-resolution rethinking of disease modeling. Mol. Psychiatry 28, 34–43 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, Y., Beyer, A. & Aebersold, R. On the dependency of cellular protein levels on mRNA abundance. Cell 165, 535–550 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Derks, J. et al. Increasing the throughput of sensitive proteomics by plexDIA. Nat. Biotechnol. 41, 50–59 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huffman, R. G. et al. Prioritized mass spectrometry increases the depth, sensitivity and data completeness of single-cell proteomics. Nat. Methods 20, 714–722 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Specht, H. et al. Single-cell proteomic and transcriptomic analysis of macrophage heterogeneity using SCoPE2. Genome Biol. 22, 50 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohan, H. et al. Dendritic and axonal architecture of individual pyramidal neurons across layers of adult human neocortex. Cereb. Cortex 25, 4839–4853 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loomba, S. et al. Connectomic comparison of mouse and human cortex. Science 377, eabo0924 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, F., Nair, R. R., Fisher, E. M. C. & Cunningham, T. J. Humanising the mouse genome piece by piece. Nat. Commun. 10, 1845 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Normand, R. et al. Found in translation: a machine learning model for mouse-to-human inference. Nat. Methods 15, 1067–1073 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Drysdale, A. T. et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat. Med. 23, 28–38 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Contractor, A., Klyachko, V. A. & Portera-Cailliau, C. Altered neuronal and circuit excitability in fragile X syndrome. Neuron 87, 699–715 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oyama, K. & Sakatani, K. Machine learning-based assessment of cognitive impairment using time-resolved near-infrared spectroscopy and basic blood test. Front. Neurol. 12, 2641 (2022).

    Article 

    Google Scholar
     

  • Wu, Y. E., Pan, L., Zuo, Y., Li, X. & Hong, W. Detecting activated cell populations using single-cell RNA-seq. Neuron 96, 313–329.e6 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lacar, B. et al. Nuclear RNA-seq of single neurons reveals molecular signatures of activation. Nat. Commun. 7, 11022 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clancy, B., Darlington, R. B. & Finlay, B. L. Translating developmental time across mammalian species. Neuroscience 105, 7–17 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 22, 343–352 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, J. et al. Integrating spatial and single-nucleus transcriptomic data elucidates microglial-specific responses in female cynomolgus macaques with depressive-like behaviors. Nat. Neurosci. 26, 1352–1364 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piñero, J. et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 45, D833–D839 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Vanlandewijck, M. et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554, 475–480 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, M. J. et al. Polygenic enrichment distinguishes disease associations of individual cells in single-cell RNA-seq data. Nat. Genet. 54, 1572–1580 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vasistha, N. A. & Khodosevich, K. The impact of (ab)normal maternal environment on cortical development. Prog. Neurobiol. 202, 102054 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Y. Y. et al. CeDR Atlas: a knowledgebase of cellular drug response. Nucleic Acids Res. 50, D1164–D1171 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schoof, E. M. et al. Quantitative single-cell proteomics as a tool to characterize cellular hierarchies. Nat. Commun. 12, 3341 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karlsson, M. et al. A single–cell type transcriptomics map of human tissues. Sci. Adv. 7, eabh2169 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petukhov, V. et al. Cell segmentation in imaging-based spatial transcriptomics. Nat. Biotechnol. 40, 345–354 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moffitt, J. R. et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362, eaau5324 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ball, G. et al. Cortical morphology at birth reflects spatiotemporal patterns of gene expression in the fetal human brain. PLoS Biol. 18, e3000976 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dachet, F. et al. Selective time-dependent changes in activity and cell-specific gene expression in human postmortem brain. Sci. Rep. 11, 6078 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaar, S. J., Natesan, S., McCutcheon, R. & Howes, O. D. Antipsychotics: mechanisms underlying clinical response and side-effects and novel treatment approaches based on pathophysiology. Neuropharmacology 172, 107704 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lobo, M. C., Whitehurst, T. S., Kaar, S. J. & Howes, O. D. New and emerging treatments for schizophrenia: a narrative review of their pharmacology, efficacy and side effect profile relative to established antipsychotics. Neurosci. Biobehav. Rev. 132, 324–361 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Mizuno, Y., McCutcheon, R. A., Brugger, S. P. & Howes, O. D. Heterogeneity and efficacy of antipsychotic treatment for schizophrenia with or without treatment resistance: a meta-analysis. Neuropsychopharmacology 45, 622–631 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, B. et al. Signature morphoelectric properties of diverse GABAergic interneurons in the human neocortex. Science 382, eadf6484 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Molnár, G. et al. Complex events initiated by individual spikes in the human cerebral cortex. PLOS Biol. 6, e222 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Svensson, V., Vento-Tormo, R. & Teichmann, S. A. Exponential scaling of single-cell RNA-seq in the past decade. Nat. Protoc. 13, 599–604 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hagemann-Jensen, M. et al. Single-cell RNA counting at allele and isoform resolution using Smart-seq3. Nat. Biotechnol. 38, 708–714 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Darmanis, S. et al. A survey of human brain transcriptome diversity at the single cell level. Proc. Natl Acad. Sci. USA 112, 7285–7290 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bakken, T. E. et al. Single-nucleus and single-cell transcriptomes compared in matched cortical cell types. PLoS ONE 13, e0209648 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cadwell, C. R. et al. Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq. Nat. Biotechnol. 34, 199–203 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361, eaat5691 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moses, L. & Pachter, L. Museum of spatial transcriptomics. Nat. Methods 19, 534–546 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eng, C.-H. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+. Nature 568, 235–239 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Changeux, J. P. The nicotinic acetylcholine receptor: the founding father of the pentameric ligand-gated ion channel superfamily. J. Biol. Chem. 287, 40207–40215 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Broide, R. S., Winzer-Serhan, U. H., Chen, Y. & Leslie, F. M. Distribution of α7 nicotinic acetylcholine receptor subunit mRNA in the developing mouse. Front. Neuroanat. 13, 76 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, J. et al. Heteromeric α7β2 nicotinic acetylcholine receptors in the brain. Trends Pharmacol. Sci. 37, 562–574 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dineley, K. T., Pandya, A. A. & Yakel, J. L. Nicotinic ACh receptors as therapeutic targets in CNS disorders. Trends Pharmacol. Sci. 36, 96–108 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leonard, S. et al. Association of promoter variants in the α7 nicotinic acetylcholine receptor subunit gene with an inhibitory deficit found in schizophrenia. Arch. Gen. Psychiatry 59, 1085–1096 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stephens, S. H. et al. Association of the 5′-upstream regulatory region of the α7 nicotinic acetylcholine receptor subunit gene (CHRNA7) with schizophrenia. Schizophr. Res. 109, 102–112 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Terry, A. V. & Callahan, P. M. α7 Nicotinic acetylcholine receptors as therapeutic targets in schizophrenia: update on animal and clinical studies and strategies for the future. Neuropharmacology 170, 108053 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tregellas, J. R. & Wylie, K. P. Alpha7 nicotinic receptors as therapeutic targets in schizophrenia. Nicotine Tob. Res. 21, 349–356 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Nichols, D. E. & Nichols, C. D. Serotonin receptors. Chem. Rev. 108, 1614–1641 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berger, M., Gray, J. A. & Roth, B. L. The expanded biology of serotonin. Annu. Rev. Med. 60, 355–366 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meltzer, H. Y. & Massey, B. W. The role of serotonin receptors in the action of atypical antipsychotic drugs. Curr. Opin. Pharmacol. 11, 59–67 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, G. & Stackman, R. W. The role of serotonin 5-HT2A receptors in memory and cognition. Front. Pharmacol. 6, 225 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miyamoto, S., Miyake, N., Jarskog, L. F., Fleischhacker, W. W. & Lieberman, J. A. Pharmacological treatment of schizophrenia: a critical review of the pharmacology and clinical effects of current and future therapeutic agents. Mol. Psychiatry 17, 1206–1227 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ebdrup, B. H., Rasmussen, H., Arnt, J. & Glenthøj, B. Serotonin 2A receptor antagonists for treatment of schizophrenia. Expert Opin. Investig. Drugs 20, 1211–1223 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pinard, E., Borroni, E., Koerner, A., Umbricht, D. & Alberati, D. Glycine transporter type I (GlyT1) inhibitor, bitopertin: a journey from lab to patient. Chimia 72, 477 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bugarski-Kirola, D. et al. Bitopertin in negative symptoms of schizophrenia—results from the phase III flashlyte and daylyte studies. Biol. Psychiatry 82, 8–16 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     


  • Source link

    Total
    0
    Shares
    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Related Posts