[ad_1]
Haggerty, S. E. Diamond genesis in a multiply-constrained model. Nature 320, 34–38 (1986).
Pal’yanov, Y. N., Sokol, A. G., Borzdov, Y. M., Khokhryakov, A. F. & Sobolev, N. V. Diamond formation from mantle carbonate fluids. Nature 400, 417–418 (1999).
Bundy, F. P. et al. The pressure-temperature phase and transformation diagram for carbon; updated through 1994. Carbon 34, 141–153 (1996).
Bundy, F. P., Hall, H. T., Strong, H. M. & Wentorfjun, R. H. Man-made diamonds. Nature 176, 51–55 (1955).
Bovenkerk, H. P., Bundy, F. P., Hall, H. T., Strong, H. M. & Wentorf, R. H. Preparation of diamond. Nature 184, 1094–1098 (1959).
Hazen, R. M. & Hazen, R. M. The Diamond Makers (Cambridge Univ. Press, 1999).
D’Haenens-Johansson, U. F. S., Butler, J. E. & Katrusha, A. N. Synthesis of diamonds and their identification. Rev. Mineral. Geochem. 88, 689–753 (2022).
Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).
Ruf, M., Wan, N. H., Choi, H., Englund, D. & Hanson, R. Quantum networks based on color centers in diamond. J. Appl. Phys. 130, 070901 (2021).
Shikata, S. Single crystal diamond wafers for high power electronics. Diam. Relat. Mater. 65, 168–175 (2016).
Railkar, T. A. et al. A Critical Review of Chemical Vapor-Deposited (CVD) Diamond for Electronic Applications. Crit. Rev. Solid State Mater. Sci. 25, 163–277 (2000).
Butler, J. E., Mankelevich, Y. A., Cheesman, A., Ma, J. & Ashfold, M. N. R. Understanding the chemical vapor deposition of diamond: recent progress. J. Phys. Condens. Matter 21, 364201 (2009).
Yamasaki, S., Pobedinskas, P. & Nicley, S. S. Recent advances in diamond science and technology. Phys. Status Solidi A 214, 1770167 (2017).
Yarbrough, W. A. & Messier, R. J. S. Current issues and problems in the chemical vapor deposition of diamond. Science 247, 688–696 (1990).
Butler, J. E. & Windischmann, H. Developments in CVD-diamond synthesis during the past decade. MRS Bull. 23, 22–27 (1998).
Schwander, M. & Partes, K. J. D. A review of diamond synthesis by CVD processes. Diam. Relat. Mater. 20, 1287–1301 (2011).
Linde, O., Geyler, O. & Epstein, A. The Global Diamond Industry 2018: A Resilient Industry Shines Through (Bain, 2018).
Dossa, S. S. et al. Analysis of the high-pressure high-temperature (HPHT) growth of single crystal diamond. J. Cryst. Growth 609, 127150 (2023).
Ferro, S. Synthesis of diamond. J. Mater. Chem. 12, 2843–2855 (2002).
Eaton-Magaña, S., Shigley, J. E. & Breeding, C. M. Observations on HPHT-grown synthetic diamonds: a review. Gems Gemol. 53, 262–284 (2017).
Sumiya, H., Harano, K. & Tamasaku, K. HPHT synthesis and crystalline quality of large high-quality (001) and (111) diamond crystals. Diam. Relat. Mater. 58, 221–225 (2015).
Kalantar-Zadeh, K. et al. Emergence of liquid metals in nanotechnology. ACS Nano 13, 7388–7395 (2019).
Taccardi, N. et al. Gallium-rich Pd–Ga phases as supported liquid metal catalysts. Nat. Chem. 9, 862–867 (2017).
Daeneke, T. et al. Liquid metals: fundamentals and applications in chemistry. Chem. Soc. Rev. 47, 4073–4111 (2018).
Camacho-Mojica, D. C. et al. Charge transfer during the dissociation of H2 and the charge state of H atoms in liquid gallium. J. Phys. Chem. C 123, 26769–26776 (2019).
Ueki, R. et al. In-situ observation of surface graphitization of gallium droplet and concentration of carbon in liquid gallium. Jpn. J. Appl. Phys. 51, 06FD28 (2012).
Fujita, J.-I. et al. Near room temperature chemical vapor deposition of graphene with diluted methane and molten gallium catalyst. Sci. Rep. 7, 12371 (2017).
Upham, D. C. et al. Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon. Science 358, 917–921 (2017).
Allioux, F.-M. et al. Carbonization of low thermal stability polymers at the interface of liquid metals. Carbon 171, 938–945 (2021).
Kawasaki, H. et al. A liquid metal catalyst for the conversion of ethanol into graphitic carbon layers under an ultrasonic cavitation field. Chem. Commun. 58, 7741–7744 (2022).
Zuraiqi, K. et al. Direct conversion of CO2 to solid carbon by Ga-based liquid metals. Energy Environ. Sci. 15, 595–600 (2022).
Li, P. C. Preparation of single-crystal graphite from melts. Nature 192, 864–865 (1961).
Tulloch, H. J. C. & Young, D. A. Synthetic single crystals of graphite. Nature 211, 730–731 (1966).
Sumiyoshi, Y., Ushio, M. & Suzuki, S. Formation of graphite single crystal from iron solution by the slow cooling method. Bull. Chem. Soc. Jpn. 61, 1577–1585 (1988).
Noda, T., Sumiyoshi, Y. & Ito, N. Growth of single crystals of graphite from a carbon-iron melt. Carbon 6, 813–816 (1968).
Austerman, S. B., Myron, S. M. & Wagner, J. W. Growth and characterization of graphite single crystals. Carbon 5, 549–557 (1967).
Merel, P., Tabbal, M., Chaker, M., Moisa, S. & Margot, J. Direct evaluation of the sp3 content in diamond-like-carbon films by XPS. Appl. Surf. Sci. 136, 105–110 (1998).
Chu, C., d’Evelyn, M., Hauge, R. & Margrave, J. Mechanism of diamond growth by chemical vapor deposition on diamond (100), (111), and (110) surfaces: carbon-13 studies. J. Appl. Phys. 70, 1695–1705 (1991).
Cai, W. et al. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 321, 1815–1817 (2008).
Yang, B. et al. Fabrication of silicon-vacancy color centers in diamond films: tetramethylsilane as a new dopant source. CrystEngComm 20, 1158–1167 (2018).
Feng, Z., Lin, Y., Tian, C., Hu, H. & Su, D. Combined study of the ground and excited states in the transformation of nanodiamonds into carbon onions by electron energy-loss spectroscopy. Sci. Rep. 9, 3784 (2019).
Luo, K. et al. Coherent interfaces govern direct transformation from graphite to diamond. Nature 607, 486–491 (2022).
Tulić, S. et al. Covalent diamond–graphite bonding: mechanism of catalytic transformation. ACS Nano 13, 4621–4630 (2019).
Wi, T.-G., Park, Y.-J., Lee, U. & Kang, Y.-B. Methane pyrolysis rate measurement using electromagnetic levitation techniques for turquoise hydrogen production: liquid In, Ga, Bi, Sn, and Cu as catalysts. Chem. Eng. J. 460, 141558 (2023).
Gong, Y. et al. Homoepitaxial diamond grown in a liquid metal solvent. ChemRxiv. Preprint at https://doi.org/10.26434/chemrxiv-2022-q8ppf (2022).
Ohtsuka, Y. et al. Theoretical study on the C–H activation of methane by liquid metal indium: catalytic activity of small indium clusters. J. Phys. Chem. A 123, 8907–8912 (2019).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Perdew, J. P., Burke, K. & Ernzerhof, M. Perdew, Burke, and Ernzerhof reply. Phys. Rev. Lett. 80, 891 (1998).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).
Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).
Nose, S. Constant-temperature molecular dynamics. J. Phys. Condens. Matter 2, SA115 (1990).
Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).
Frenkel, D. & Smit, B. Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, 1996).
Sharma, B. D. & Donohue, J. A refinement of the crystal structure of gallium. Z. Kristallogr. Cryst. Mater. 117, 293–300 (1962).
Assael, M. J. et al. Reference data for the density and viscosity of liquid cadmium, cobalt, gallium, indium, mercury, silicon, thallium, and zinc. J. Phys. Chem. Ref. Data 41, 033101 (2012).
Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Academic Press, 2013).
Yan, G., Da, L. & Rodney, R. Source data for “Growth of diamond in liquid metal at 1 atmosphere pressure”. Zenodo https://doi.org/10.5281/zenodo.10803625 (2024).
[ad_2]
Source link