Motor neurons generate pose-targeted movements via proprioceptive sculpting

  • Sherrington, C. The Integrative Action of the Nervous System (Cambridge Univ. Press Archive, 1952).

  • Dionne, H., Hibbard, K. L., Cavallaro, A., Kao, J.-C. & Rubin, G. M. Genetic reagents for making Split-GAL4 lines in Drosophila. Genetics 209, 31–35 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milde, J. J., Seyan, H. S. & Strausfeld, N. J. The neck motor system of the fly Calliphora erythrocephala. II Sensory organization. J. Comp. Physiol. A 160, 225–238 (1987).

    Article 

    Google Scholar
     

  • Merel, J., Botvinick, M. & Wayne, G. Hierarchical motor control in mammals and machines. Nat. Commun. 10, 5489 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scott, S. H. A functional taxonomy of bottom-up sensory feedback processing for motor actions. Trends Neurosci. 39, 512–526 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McKellar, C. E., Siwanowicz, I., Dickson, B. J. & Simpson, J. H. Controlling motor neurons of every muscle for fly proboscis reaching. eLife 9, e54978 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baek, M. & Mann, R. S. Lineage and birth date specify motor neuron targeting and dendritic architecture in adult Drosophila. J. Neurosci. 29, 6904–6916 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Azevedo, A. W. et al. A size principle for recruitment of Drosophila leg motor neurons. eLife 9, e56754 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strausfeld, N. J., Seyan, H. S. & Milde, J. J. The neck motor system of the fly Calliphora erythrocephala. I Muscles and motor neurons. J. Comp. Physiol. A 160, 205–224 (1987).

    Article 

    Google Scholar
     

  • Phelps, J. S. et al. Reconstruction of motor control circuits in adult Drosophila using automated transmission electron microscopy. Cell 184, 759–774 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hengstenberg, R. Gaze control in the blowfly Calliphora: a multisensory, two-stage integration process. Semin. Neurosci. 3, 19–29 (1991).

    Article 

    Google Scholar
     

  • Kim, A. J., Fenk, L. M., Lyu, C. & Maimon, G. Quantitative predictions orchestrate visual signaling in Drosophila. Cell 168, 280–294 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borst, A., Haag, J. & Reiff, D. F. Fly motion vision. Annu. Rev. Neurosci. 33, 49–70 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, A. et al. A comprehensive neuroanatomical survey of the Drosophila lobula plate tangential neurons with predictions for their optic flow sensitivity. eLife 13, RP93659 (2024).

  • Krapp, H. G. & Hengstenberg, R. Estimation of self-motion by optic flow processing in single visual interneurons. Nature 384, 463–466 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, Z. et al. A complete electron microscopy volume of the brain of adult Drosophila melanogaster. Cell 174, 730–743 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wertz, A., Haag, J. & Borst, A. Integration of binocular optic flow in cervical neck motor neurons of the fly. J. Comp. Physiol. A 198, 655–668 (2012).

    Article 

    Google Scholar
     

  • Huston, S. J. & Krapp, H. G. Visuomotor transformation in the fly gaze stabilization system. PLoS Biol. 6, e173 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fisher, N. I. Statistical Analysis of Circular Data (Cambridge Univ. Press, 1993).

  • Graziano, M. S. A., Taylor, C. S. R. & Moore, T. Complex movements evoked by microstimulation of precentral cortex. Neuron 34, 841–851 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Griffin, D. M., Hudson, H. M., Belhaj-Saïf, A. & Cheney, P. D. EMG activation patterns associated with high frequency, long-duration intracortical microstimulation of primary motor cortex. J. Neurosci. 34, 1647–1656 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klier, E. M., Wang, H. & Crawford, J. D. The superior colliculus encodes gaze commands in retinal coordinates. Nat. Neurosci. 4, 627–632 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Field, L. H. & Matheson, T. Chordotonal organs of insects. Adv. Insect Physiol. 27, 1–228 (1998).

  • Tuthill, J. C. & Azim, E. Proprioception. Curr. Biol. 28, R194–R203 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Preuss, T. & Hengstenberg, R. Structure and kinematics of the prosternal organs and their influence on head position in the blowfly Calliphora erythrocephala. J. Comp. Physiol. A 171, 483–493 (1992).

    Article 

    Google Scholar
     

  • Feldman, A. G. Functional tuning of the nervous system with control of movement or maintenance of a steady posture. II. Controllable parameters of the muscle. Biofizika 11, 565–578 (1966).


    Google Scholar
     

  • Bizzi, E., Mussa-Ivaldi, F. A. & Giszter, S. Computations underlying the execution of movement: a biological perspective. Science 253, 287–291 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sainburg, R. L. Should the equilibrium point hypothesis (EPH) be considered a scientific theory? Motor Control 19, 142–148 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Huston, S. J. & Krapp, H. G. Nonlinear integration of visual and haltere inputs in fly neck motor neurons. J. Neurosci. 29, 13097–13105 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Todorov, E. & Jordan, M. I. Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 5, 1226–1235 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shadmehr, R. From equilibrium point to optimal control. Motor Control 14, e25–e30 (2010).

    Article 

    Google Scholar
     

  • Gorb, S. N. The jumping mechanism of cicada Cercopis vulnerata (Auchenorrhyncha, Cercopidae): skeleton–muscle organisation, frictional surfaces and inverse-kinematic model of leg movements. Arthropod Struct. Dev. 33, 201–220 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Siwanowicz, I. & Burrows, M. Three dimensional reconstruction of energy stores for jumping in planthoppers and froghoppers from confocal laser scanning microscopy. eLife 6, e23824 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sober, S. J., Sponberg, S., Nemenman, I. & Ting, L. H. Millisecond spike timing codes for motor control. Trends Neurosci. 41, 644–648 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loeb, E. P., Giszter, S. F., Borghesani, P. & Bizzi, E. Effects of dorsal root cut on the forces evoked by spinal microstimulation in the spinalized frog. Somatosens. Mot. Res. 10, 81–95 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caggiano, V., Cheung, V. C. K. & Bizzi, E. An optogenetic demonstration of motor modularity in the mammalian spinal cord. Sci. Rep. 6, 35185 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilbert, C. & Bauer, E. Resistance reflex that maintains upright head posture in the flesh fly Neobellieria bullata (Sarcophagidae). J. Exp. Biol. 201, 2735–2744 (1998).

    Article 
    PubMed 

    Google Scholar
     

  • Cellini, B., Salem, W. & Mongeau, J.-M. Mechanisms of punctuated vision in fly flight. Curr. Biol. 31, 4009–4024 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ijspeert, A., Nakanishi, J. & Schaal, S. Learning attractor landscapes for learning motor primitives. Adv. Neural Inf. Process. Syst. 15, 1547–1554 (2002).

  • Durr, V. & Matheson, T. Graded limb targeting in an insect is caused by the shift of a single movement pattern. J. Neurophysiol. 90, 1754–1765 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Card, G. & Dickinson, M. H. Visually mediated motor planning in the escape response of Drosophila. Curr. Biol. 18, 1300–1307 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Masullo, L. et al. Genetically defined functional modules for spatial orienting in the mouse superior colliculus. Curr. Biol. 29, 2892–2904 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolpert, D. M. & Ghahramani, Z. Computational principles of movement neuroscience. Nat. Neurosci. 3, 1212–1217 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fujiwara, T., Brotas, M. & Chiappe, M. E. Walking strides direct rapid and flexible recruitment of visual circuits for course control in Drosophila. Neuron 110, 2124–2138 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cruz, T. L., Pérez, S. M. & Chiappe, M. E. Fast tuning of posture control by visual feedback underlies gaze stabilization in walking Drosophila. Curr. Biol. 31, 4596–4607 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tweed, D., Cadera, W. & Vilis, T. Computing three-dimensional eye position quaternions and eye velocity from search coil signals. Vision Res. 30, 97–110 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bogovic, J. A. et al. An unbiased template of the Drosophila brain and ventral nerve cord. PLoS ONE 15, e0236495 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rokicki, K. et al. Janelia workstation codebase. GitHub https://github.com/JaneliaSciComp/workstation (2019).

  • Luan, H., Peabody, N. C., Vinson, C. R. & White, B. H. Refined spatial manipulation of neuronal function by combinatorial restriction of transgene expression. Neuron 52, 425–436 (2006).

    Article 

    Google Scholar
     

  • Pfeiffer, B. D. et al. Refinement of tools for targeted gene expression in Drosophila. Genetics 186, 735–755 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tirian, L. & Dickson, B. J. The VT GAL4, LexA and split-GAL4 driver line collections for targeted expression in the Drosophila nervous system. Preprint at bioRxiv https://doi.org/10.1101/198648 (2017).

  • Klapoetke, N. C. et al. Independent optical excitation of distinct neural populations. Nat. Methods 11, 338–346 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bloomquist, B. T. et al. Isolation of a putative phospholipase C gene of Drosophila, norpA and its role in phototransduction. Cell 54, 723–733 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, A., Kabra, M., Branson, K., Robie, A. A. & Roian, E. APT: animal part tracker. GitHub https://github.com/kristinbranson/APT (2018).

  • Horn, B. K. P. Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. A 4, 629 (1987).

    Article 

    Google Scholar
     

  • Yershova, A., Jain, S., Lavalle, S. M. & Mitchell, J. C. Generating uniform incremental grids on SO(3) using the Hopf fibration. Int. J. Rob. Res. 29, 801–812 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Markley, F. L., Cheng, Y., Crassidis, J. L. & Oshman, Y. Averaging quaternions. J. Guid. Control Dynam. 30, 1193–1197 (2007).

    Article 

    Google Scholar
     

  • Maimon, G., Straw, A. D. & Dickinson, M. H. Active flight increases the gain of visual motion processing in Drosophila. Nat. Neurosci. 13, 393–399 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nordström, K., Barnett, P. D., de Miguel, I. M. M., Brinkworth, R. S. A. & O’Carroll, D. C. Sexual dimorphism in the hoverfly motion vision pathway. Curr. Biol. 18, 661–667 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Nern, A., Pfeiffer, B. D. & Rubin, G. M. Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system. Proc. Natl Acad. Sci. USA 112, E2967–E2976 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     


  • Source link

    Total
    0
    Shares
    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Related Posts