Opto-twistronic Hall effect in a three-dimensional spiral lattice

  • Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sanchez-Valencia, J. R. et al. Controlled synthesis of single-chirality carbon nanotubes. Nature 512, 61–64 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Regan, E. C. et al. Emerging exciton physics in transition metal dichalcogenide heterobilayers. Nat. Rev. Mater. 7, 778–795 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Light-induced ferromagnetism in moiré superlattices. Nature 604, 468–473 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, T. et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature 600, 641–646 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Y. et al. A tunable bilayer Hubbard model in twisted WSe2. Nat. Nanotechnol. 17, 934–939 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, C. et al. Intelligent infrared sensing enabled by tunable moiré quantum geometry. Nature 604, 266–272 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L. et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature 591, 61–65 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, Z., Carr, S., Massatt, D., Luskin, M. & Kaxiras, E. Twisted trilayer graphene: a precisely tunable platform for correlated electrons. Phys. Rev. Lett. 125, 116404 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, F., Zhang, R.-X. & Sarma, S. D. Three-dimensional topological twistronics. Phys. Rev. Res. 2, 022010 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y.-Q., Morimoto, T. & Moore, J. E. Optical rotation in thin chiral/twisted materials and the gyrotropic magnetic effect. Phys. Rev. B 101, 174419 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Crosse, J. & Moon, P. Quasicrystalline electronic states in twisted bilayers and the effects of interlayer and sublattice symmetries. Phys. Rev. B 103, 045408 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lian, Z. et al. Exciton superposition across moiré states in a semiconducting moiré superlattice. Nat. Commun. 14, 5042 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, N. et al. Quantum-metric-induced nonlinear transport in a topological antiferromagnet. Nature 621, 487–492 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Helical van der Waals crystals with discretized Eshelby twist. Nature 570, 358–362 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Y. et al. Supertwisted spirals of layered materials enabled by growth on non-Euclidean surfaces. Science 370, 442–445 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Ci, P. et al. Breaking rotational symmetry in supertwisted WS2 spirals via moiré magnification of intrinsic heterostrain. Nano Lett. 22, 9027–9035 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan, X. et al. Mechanism of extreme optical nonlinearities in spiral WS2 above the bandgap. Nano Lett. 20, 2667–2673 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shearer, M. J. et al. Complex and noncentrosymmetric stacking of layered metal dichalcogenide materials created by screw dislocations. J. Am. Chem. Soc. 139, 3496–3504 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Plechinger, G. et al. Identification of excitons, trions and biexcitons in single‐layer WS2. Phys. Status Solidi Rapid Res. Lett. 9, 457–461 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Poshakinskiy, A. V., Kazanov, D. R., Shubina, T. V. & Tarasenko, S. A. Optical activity in chiral stacks of 2D semiconductors. Nanophotonics 7, 753–762 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Gao, Y., Zhang, Y. & Xiao, D. Tunable layer circular photogalvanic effect in twisted bilayers. Phys. Rev. Lett. 124, 077401 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, P.-C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Handa, T. et al. Spontaneous exciton dissociation in transition metal dichalcogenide monolayers. Sci. Adv. 10, eadj4060 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, C.-J. et al. Chiral atomically thin films. Nat. Nanotechnol. 11, 520–524 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ochoa, H. & Asenjo-Garcia, A. Flat bands and chiral optical response of moiré insulators. Phys. Rev. Lett. 125, 037402 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Stauber, T., Low, T. & Gómez-Santos, G. Chiral response of twisted bilayer graphene. Phys. Rev. Lett. 120, 046801 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen D. X. & Son D. T. Electrodynamics of thin sheets of twisted material. Preprint at arxiv.org/abs/2008.02812 (2020).

  • Lee, J., Mak, K. F. & Shan, J. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotechnol. 11, 421–425 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Quereda, J. et al. Symmetry regimes for circular photocurrents in monolayer MoSe2. Nat. Commun. 9, 3346 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, W. et al. Generation of helical topological exciton-polaritons. Science 370, 600–604 (2020).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Munkhbat, B. et al. Self-hybridized exciton-polaritons in multilayers of transition metal dichalcogenides for efficient light absorption. ACS Photonics 6, 139–147 (2018).

    Article 

    Google Scholar
     

  • Ganichev, S. D. & Prettl, W. Spin photocurrents in quantum wells. J. Phys. Condens. Matter 15, R935 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Glazov, M. & Golub, L. Valley Hall effect caused by the phonon and photon drag. Phys. Rev. B 102, 155302 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ji, Z. et al. Spatially dispersive circular photogalvanic effect in a Weyl semimetal. Nat. Mater. 18, 955–962 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong, Y., Shi, L.-k & Song, J. C. W. Polariton drag enabled quantum geometric photocurrents in high-symmetry materials. Phys. Rev. B 106, 205423 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shi, L.-k, Zhang, D., Chang, K. & Song, J. C. W. Geometric photon-drag effect and nonlinear shift current in centrosymmetric crystals. Phys. Rev. Lett. 126, 197402 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, Z., Cazeaux, P., Luskin, M. & Kaxiras, E. Modeling mechanical relaxation in incommensurate trilayer van der Waals heterostructures. Phys. Rev. B 101, 224107 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gassner, S. & Mele, E. J. Regularized lattice theory for spatially dispersive nonlinear optical conductivities. Phys. Rev. B 108, 085403 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chaudhary, S., Lewandowski, C. & Refael, G. Shift-current response as a probe of quantum geometry and electron-electron interactions in twisted bilayer graphene. Phys. Rev. Res. 4, 013164 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Koenderink, A. F., Alù, A. & Polman, A. Nanophotonics: shrinking light-based technology. Science 348, 516–521 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article 
    ADS 

    Google Scholar
     

  • de Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ma, Q., Grushin, A. G. & Burch, K. S. Topology and geometry under the nonlinear electromagnetic spotlight. Nat. Mater. 20, 1601–1614 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Y. & Jin, S. Stacking and twisting of layered materials enabled by screw dislocations and non-Euclidean surfaces. Acc. Mater. Res. 3, 369–378 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ji, Z. et al. Photocurrent detection of the orbital angular momentum of light. Science 368, 763–767 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dhara, S., Mele, E. J. & Agarwal, R. Voltage-tunable circular photogalvanic effect in silicon nanowires. Science 349, 726–729 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     


  • Source link

    Total
    0
    Shares
    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Related Posts