Taylor, C. T. & McElwain, J. C. Ancient atmospheres and the evolution of oxygen sensing via the hypoxia-inducible factor in metazoans. Physiology 25, 272–279 (2010).
Article
CAS
PubMed
Google Scholar
Mills, D. B. et al. The last common ancestor of animals lacked the HIF pathway and respired in low-oxygen environments. eLife 7, e31176 (2018).
Article
PubMed
PubMed Central
Google Scholar
Semenza, G. L., Roth, P. H., Fang, H. M. & Wang, G. L. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem. 269, 23757–23763 (1994).
Article
CAS
PubMed
Google Scholar
Liu, Y., Cox, S. R., Morita, T. & Kourembanas, S. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5′ enhancer. Circ. Res. 77, 638–643 (1995).
Article
CAS
PubMed
Google Scholar
Poth, J. M., Brodsky, K., Ehrentraut, H., Grenz, A. & Eltzschig, H. K. Transcriptional control of adenosine signaling by hypoxia-inducible transcription factors during ischemic or inflammatory disease. J. Mol. Med. 91, 183–193 (2013).
Article
CAS
PubMed
Google Scholar
Eltzschig, H. K., Sitkovsky, M. V. & Robson, S. C. Purinergic signaling during inflammation. N. Engl. J. Med. 367, 2322–2333 (2012).
Article
CAS
PubMed
PubMed Central
Google Scholar
Prabhakar, N. R. & Semenza, G. L. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol. Rev. 92, 967–1003 (2012).
Article
CAS
PubMed
Google Scholar
Semenza, G. L. Oxygen sensing, homeostasis, and disease. N. Engl. J. Med. 365, 537–547 (2011).
Article
CAS
PubMed
Google Scholar
Eckle, T. et al. Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch crucial for myocardial adaptation to ischemia. Nat. Med. 18, 774–782 (2012). This study reports that adenosine-dependent Per2 stabilization facilitates HIF-elicited cardiac metabolic adaptation and ischaemia tolerance.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eltzschig, H. K. & Eckle, T. Ischemia and reperfusion — from mechanism to translation. Nat. Med. 17, 1391–1401 (2011).
Article
CAS
PubMed
Google Scholar
Lee, P., Chandel, N. S. & Simon, M. C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat. Rev. Mol. Cell Biol. 21, 268–283 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith, T. G., Robbins, P. A. & Ratcliffe, P. J. The human side of hypoxia-inducible factor. Br. J. Haematol. 141, 325–334 (2008).
Article
CAS
PubMed
PubMed Central
Google Scholar
Manalo, D. J. et al. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105, 659–669 (2005).
Article
CAS
PubMed
Google Scholar
Neudecker, V., Yuan, X., Bowser, J. L. & Eltzschig, H. K. MicroRNAs in mucosal inflammation. J. Mol. Med. 95, 935–949 (2017).
Article
CAS
PubMed
Google Scholar
Neudecker, V., Brodsky, K. S., Kreth, S., Ginde, A. A. & Eltzschig, H. K. Emerging roles for microRNAs in perioperative medicine. Anesthesiology 124, 489–506 (2016).
Article
CAS
PubMed
Google Scholar
Ju, C. et al. Hypoxia-inducible factor-1alpha-dependent induction of miR122 enhances hepatic ischemia tolerance. J. Clin. Invest. 131, e140300 (2021). This paper demonstrates that miRNAs can function in feed-forward loops by repressing PHDs, thereby enhancing their transcriptional induction through HIFs and providing tissue protection during liver ischemia–reperfusion injury.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang, G. L. & Semenza, G. L. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J. Biol. Chem. 268, 21513–21518 (1993).
Article
CAS
PubMed
Google Scholar
Semenza, G. L., Nejfelt, M. K., Chi, S. M. & Antonarakis, S. E. Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene. Proc. Natl Acad. Sci. USA 88, 5680–5684 (1991). This study is among the first reports from the Nobel laureate Gregg Semenza to describe a novel protein as a HIF that functions as a transcriptional enhancer of EPO.
Article
CAS
PubMed
PubMed Central
Google Scholar
Semenza, G. L., Koury, S. T., Nejfelt, M. K., Gearhart, J. D. & Antonarakis, S. E. Cell-type-specific and hypoxia-inducible expression of the human erythropoietin gene in transgenic mice. Proc. Natl Acad. Sci. USA 88, 8725–8729 (1991).
Article
CAS
PubMed
PubMed Central
Google Scholar
Fandrey, J., Schodel, J., Eckardt, K. U., Katschinski, D. M. & Wenger, R. H. Now a nobel gas: oxygen. Pflug. Arch. 471, 1343–1358 (2019).
Article
CAS
Google Scholar
Ivan, M. et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464–468 (2001). This study reports the identification of VHL tumour suppressor protein as a key molecule in the oxygen-dependent degradation of HIFα.
Article
CAS
PubMed
Google Scholar
Jaakkola, P. et al. Targeting of HIF-alpha to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472 (2001).
Article
CAS
PubMed
Google Scholar
Epstein, A. C. et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54 (2001). This study describes EGL9 as a key dioxygenase for oxygen-dependent HIF prolyl hydroxylation in C. elegans and defined isoforms of conserved HIF-PHDs in mammalian cells.
Article
CAS
PubMed
Google Scholar
Eltzschig, H. K. et al. HIF-1-dependent repression of equilibrative nucleoside transporter (ENT) in hypoxia. J. Exp. Med. 202, 1493–1505 (2005).
Article
CAS
PubMed
PubMed Central
Google Scholar
Eltzschig, H. K. et al. Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism. Blood 104, 3986–3992 (2004).
Article
CAS
PubMed
Google Scholar
Thompson, L. F. et al. Crucial role for ecto-5′-nucleotidase (CD73) in vascular leakage during hypoxia. J. Exp. Med. 200, 1395–1405 (2004).
Article
CAS
PubMed
PubMed Central
Google Scholar
Eltzschig, H. K. et al. Coordinated adenine nucleotide phosphohydrolysis and nucleoside signaling in posthypoxic endothelium: role of ectonucleotidases and adenosine A2B receptors. J. Exp. Med. 198, 783–796 (2003).
Article
CAS
PubMed
PubMed Central
Google Scholar
Wicks, E. E. & Semenza, G. L. Hypoxia-inducible factors: cancer progression and clinical translation. J. Clin. Invest. 132, e159839 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Eltzschig, H. K. & Carmeliet, P. Hypoxia and inflammation. N. Engl. J. Med. 364, 656–665 (2011).
Article
CAS
PubMed
PubMed Central
Google Scholar
Bowser, J. L., Lee, J. W., Yuan, X. & Eltzschig, H. K. The hypoxia–adenosine link during inflammation. J. Appl. Physiol. 123, 1303–1320 (2017).
Article
CAS
PubMed
PubMed Central
Google Scholar
Eckle, T. et al. HIF1A reduces acute lung injury by optimizing carbohydrate metabolism in the alveolar epithelium. PLoS Biol. 11, e1001665 (2013). This study demonstrates that HIF1α is stabilized in the lungs during ARDS, and functions in endogenous lung protection by optimizing glucose metabolism in alveolar epithelial cells.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bartels, K., Grenz, A. & Eltzschig, H. K. Hypoxia and inflammation are two sides of the same coin. Proc. Natl Acad. Sci. USA 110, 18351–18352 (2013).
Article
CAS
PubMed
PubMed Central
Google Scholar
Karhausen, J. et al. Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J. Clin. Invest. 114, 1098–1106 (2004).
Article
CAS
PubMed
PubMed Central
Google Scholar
Clambey, E. T. et al. Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc. Natl Acad. Sci. USA 109, E2784–E2793 (2012).
Article
CAS
PubMed
PubMed Central
Google Scholar
Campbell, E. L. et al. Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation. Immunity 40, 66–77 (2014). This study shows that infiltrating neutrophils deplete local oxygen to stabilize HIF and promote intestinal inflammation resolution in murine colitis models.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eltzschig, H. K., Bratton, D. L. & Colgan, S. P. Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases. Nat. Rev. Drug. Discov. 13, 852–869 (2014).
Article
CAS
PubMed
PubMed Central
Google Scholar
Hatfield, S. M. et al. Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci. Transl. Med. 7, 277ra230 (2015).
Article
Google Scholar
Lee, J. W., Ko, J., Ju, C. & Eltzschig, H. K. Hypoxia signaling in human diseases and therapeutic targets. Exp. Mol. Med. 51, 1–13 (2019).
Article
PubMed
PubMed Central
Google Scholar
Ong, S. G. et al. HIF-1 reduces ischaemia-reperfusion injury in the heart by targeting the mitochondrial permeability transition pore. Cardiovasc. Res. 104, 24–36 (2014).
Article
CAS
PubMed
Google Scholar
Guo, Y. et al. Systematic review with meta-analysis: HIF-1alpha attenuates liver ischemia-reperfusion injury. Transpl. Rev. 29, 127–134 (2015).
Article
Google Scholar
Gao, R. Y. et al. Hypoxia-inducible factor-2alpha reprograms liver macrophages to protect against acute liver injury through the production of interleukin-6. Hepatology 71, 2105–2117 (2020).
Article
CAS
PubMed
Google Scholar
Kapitsinou, P. P. et al. Endothelial HIF-2 mediates protection and recovery from ischemic kidney injury. J. Clin. Invest. 124, 2396–2409 (2014).
Article
CAS
PubMed
PubMed Central
Google Scholar
Hill, P. et al. Inhibition of hypoxia inducible factor hydroxylases protects against renal ischemia-reperfusion injury. J. Am. Soc. Nephrol. 19, 39–46 (2008).
Article
CAS
PubMed
PubMed Central
Google Scholar
Woods, P. S. et al. HIF-1alpha induces glycolytic reprograming in tissue-resident alveolar macrophages to promote cell survival during acute lung injury. eLife 11, e77457 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim, Y. I. et al. Local stabilization of hypoxia-inducible factor-1alpha controls intestinal inflammation via enhanced gut barrier function and immune regulation. Front. Immunol. 11, 609689 (2020).
Article
CAS
PubMed
Google Scholar
Dowdell, A. S. et al. The HIF target ATG9A is essential for epithelial barrier function and tight junction biogenesis. Mol. Biol. Cell 31, 2249–2258 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin, A. E. et al. Role of hypoxia inducible factor-1alpha (HIF-1alpha) in innate defense against uropathogenic escherichia coli infection. PLoS Pathog. 11, e1004818 (2015).
Article
PubMed
PubMed Central
Google Scholar
Bhandari, T. & Nizet, V. Hypoxia-inducible factor (HIF) as a pharmacological target for prevention and treatment of infectious diseases. Infect. Dis. Ther. 3, 159–174 (2014).
Article
PubMed
PubMed Central
Google Scholar
Suhara, T. et al. Inhibition of the oxygen sensor PHD2 in the liver improves survival in lactic acidosis by activating the Cori cycle. Proc. Natl Acad. Sci. USA 112, 11642–11647 (2015). This study shows that PHD2 is a novel therapeutic target for lactic acidosis and indicates that pharmacological enhancement of PHD2 might benefit infectious and ischaemic diseases.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sanghani, N. S. & Haase, V. H. Hypoxia-inducible factor activators in renal anemia: current clinical experience. Adv. Chronic Kidney Dis. 26, 253–266 (2019).
Article
PubMed
PubMed Central
Google Scholar
Eckardt, K. U. et al. Safety and efficacy of vadadustat for anemia in patients undergoing dialysis. N. Engl. J. Med. 384, 1601–1612 (2021). This study reports two randomized, phase III clinical trials that showed that HIF-PHDi vadadustat was non-inferior to darbepoetin alfa in cardiovascular safety and efficacy in correcting anaemia in patients with CKD undergoing dialysis.
Article
CAS
PubMed
Google Scholar
Chertow, G. M. et al. Vadadustat in patients with anemia and non-dialysis-dependent CKD. N. Engl. J. Med. 384, 1589–1600 (2021).
Article
CAS
PubMed
Google Scholar
Chen, N. et al. Roxadustat for anemia in patients with kidney disease not receiving dialysis. N. Engl. J. Med. 381, 1001–1010 (2019).
Article
CAS
PubMed
Google Scholar
Chen, N. et al. Roxadustat treatment for anemia in patients undergoing long-term dialysis. N. Engl. J. Med. 381, 1011–1022 (2019). This study reports the results from a randomized and multicentre phase III clinical trial that showed that HIF-PHDi roxadustat was noninferior to parenteral epoetin alfa in correcting anaemia in Chinese patients undergoing dialysis.
Article
CAS
PubMed
Google Scholar
Zhou, J. & Gong, K. Belzutifan: a novel therapy for von Hippel-Lindau disease. Nat. Rev. Nephrol. 18, 205–206 (2022).
Article
CAS
PubMed
Google Scholar
Jonasch, E. et al. Belzutifan for renal cell carcinoma in von Hippel-Lindau disease. N. Engl. J. Med. 385, 2036–2046 (2021). This study reports the results from a randomized and multicentre phase III clinical trial that showed the safety and efficacy of HIF2α inhibitor belzutifan as a treatment for RCC and non-RCC neoplasms in patients with VHL disease.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kamihara, J. et al. Belzutifan, a potent HIF2alpha inhibitor, in the pacak-zhuang syndrome. N. Engl. J. Med. 385, 2059–2065 (2021).
Article
CAS
PubMed
Google Scholar
Choueiri, T. K. & Kaelin, W. G. Jr. Targeting the HIF2-VEGF axis in renal cell carcinoma. Nat. Med. 26, 1519–1530 (2020).
Article
CAS
PubMed
Google Scholar
Salman, S. et al. HIF inhibitor 32-134D eradicates murine hepatocellular carcinoma in combination with anti-PD1 therapy. J. Clin. Invest. 132, e156774 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Pullamsetti, S. S., Mamazhakypov, A., Weissmann, N., Seeger, W. & Savai, R. Hypoxia-inducible factor signaling in pulmonary hypertension. J. Clin. Invest. 130, 5638–5651 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang, J. et al. HIF-1alpha and HIF-2alpha redundantly promote retinal neovascularization in patients with ischemic retinal disease. J. Clin. Invest. 131, e139202 (2021). This article provides evidence that targeting both HIF1α and HIF2α is necessary to prevent retinal neovascularization in patients with sickle cell retinopathy.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dengler, V. L., Galbraith, M. & Espinosa, J. M. Transcriptional regulation by hypoxia inducible factors. Crit. Rev. Biochem. Mol. Biol. 49, 1–15 (2014).
Article
CAS
PubMed
Google Scholar
Semenza, G. L. Pharmacologic targeting of hypoxia-inducible factors. Annu. Rev. Pharmacol. Toxicol. 59, 379–403 (2019).
Article
CAS
PubMed
Google Scholar
Diao, X. et al. Identification of oleoylethanolamide as an endogenous ligand for HIF-3alpha. Nat. Commun. 13, 2529 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu, D., Potluri, N., Lu, J., Kim, Y. & Rastinejad, F. Structural integration in hypoxia-inducible factors. Nature 524, 303–308 (2015).
Article
CAS
PubMed
Google Scholar
Semenza, G. L. & Wang, G. L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell Biol. 12, 5447–5454 (1992).
CAS
PubMed
PubMed Central
Google Scholar
Tian, H., McKnight, S. L. & Russell, D. W. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 11, 72–82 (1997). This study reports the identification of EPAS1/HIF2α as an important player in vascularization.
Article
CAS
PubMed
Google Scholar
Mastrogiannaki, M., Matak, P. & Peyssonnaux, C. The gut in iron homeostasis: role of HIF-2 under normal and pathological conditions. Blood 122, 885–892 (2013).
Article
CAS
PubMed
PubMed Central
Google Scholar
Knutson, A. K., Williams, A. L., Boisvert, W. A. & Shohet, R. V. HIF in the heart: development, metabolism, ischemia, and atherosclerosis. J. Clin. Invest. 131, e137557 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu, C. J., Wang, L. Y., Chodosh, L. A., Keith, B. & Simon, M. C. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol. Cell Biol. 23, 9361–9374 (2003).
Article
CAS
PubMed
PubMed Central
Google Scholar
Takeda, N. et al. Differential activation and antagonistic function of HIF-alpha isoforms in macrophages are essential for NO homeostasis. Genes Dev. 24, 491–501 (2010).
Article
CAS
PubMed
PubMed Central
Google Scholar
Branco-Price, C. et al. Endothelial cell HIF-1alpha and HIF-2alpha differentially regulate metastatic success. Cancer Cell 21, 52–65 (2012).
Article
CAS
PubMed
PubMed Central
Google Scholar
Makino, Y. et al. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414, 550–554 (2001).
Article
CAS
PubMed
Google Scholar
Makino, Y., Kanopka, A., Wilson, W. J., Tanaka, H. & Poellinger, L. Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3alpha locus. J. Biol. Chem. 277, 32405–32408 (2002).
Article
CAS
PubMed
Google Scholar
Semenza, G. L. The genomics and genetics of oxygen homeostasis. Annu. Rev. Genomics Hum. Genet. 21, 183–204 (2020).
Article
CAS
PubMed
Google Scholar
McNeill, L. A. et al. Hypoxia-inducible factor asparaginyl hydroxylase (FIH-1) catalyses hydroxylation at the beta-carbon of asparagine-803. Biochem. J. 367, 571–575 (2002).
Article
CAS
PubMed
PubMed Central
Google Scholar
Freedman, S. J. et al. Structural basis for recruitment of CBP/p300 by hypoxia-inducible factor-1 alpha. Proc. Natl Acad. Sci. USA 99, 5367–5372 (2002). This report provides the solution structure as a mechanism of the specific recognition of CBP–p300 by HIF1α.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang, N. et al. The asparaginyl hydroxylase factor inhibiting HIF-1alpha is an essential regulator of metabolism. Cell Metab. 11, 364–378 (2010).
Article
CAS
PubMed
PubMed Central
Google Scholar
Hirota, K. HIF-alpha prolyl hydroxylase inhibitors and their implications for biomedicine: a comprehensive review. Biomedicines 9, 468 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999). This study shows that VHL tumour suppressor gene product pVHL is important for oxygen-dependent degradation of HIFα.
Article
CAS
PubMed
Google Scholar
Iwai, K. et al. Identification of the von Hippel–Lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex. Proc. Natl Acad. Sci. USA 96, 12436–12441 (1999).
Article
CAS
PubMed
PubMed Central
Google Scholar
Schofield, C. J. & Ratcliffe, P. J. Signalling hypoxia by HIF hydroxylases. Biochem. Biophys. Res. Commun. 338, 617–626 (2005).
Article
CAS
PubMed
Google Scholar
Kasper, L. H. et al. Two transactivation mechanisms cooperate for the bulk of HIF-1-responsive gene expression. EMBO J. 24, 3846–3858 (2005).
Article
CAS
PubMed
PubMed Central
Google Scholar
Wenger, R. H., Stiehl, D. P. & Camenisch, G. Integration of oxygen signaling at the consensus HRE. Sci. STKE 2005, re12 (2005).
Article
PubMed
Google Scholar
Hartmann, H. et al. Hypoxia-independent activation of HIF-1 by Enterobacteriaceae and their siderophores. Gastroenterology 134, 756–767 (2008).
Article
CAS
PubMed
Google Scholar
Appelhoff, R. J. et al. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J. Biol. Chem. 279, 38458–38465 (2004).
Article
CAS
PubMed
Google Scholar
Yeh, T. L. et al. Molecular and cellular mechanisms of HIF prolyl hydroxylase inhibitors in clinical trials. Chem. Sci. 8, 7651–7668 (2017).
Article
CAS
PubMed
PubMed Central
Google Scholar
Markolovic, S., Wilkins, S. E. & Schofield, C. J. Protein hydroxylation catalyzed by 2-oxoglutarate-dependent oxygenases. J. Biol. Chem. 290, 20712–20722 (2015).
Article
CAS
PubMed
PubMed Central
Google Scholar
Hodges, V. M., Rainey, S., Lappin, T. R. & Maxwell, A. P. Pathophysiology of anemia and erythrocytosis. Crit. Rev. Oncol. Hematol. 64, 139–158 (2007).
Article
PubMed
Google Scholar
Dame, C. et al. Erythropoietin mRNA expression in human fetal and neonatal tissue. Blood 92, 3218–3225 (1998).
Article
CAS
PubMed
Google Scholar
Zhang, Y. et al. Erythropoietin action in stress response, tissue maintenance and metabolism. Int. J. Mol. Sci. 15, 10296–10333 (2014).
Article
PubMed
PubMed Central
Google Scholar
Obara, N. et al. Repression via the GATA box is essential for tissue-specific erythropoietin gene expression. Blood 111, 5223–5232 (2008).
Article
CAS
PubMed
Google Scholar
Souma, T., Suzuki, N. & Yamamoto, M. Renal erythropoietin-producing cells in health and disease. Front. Physiol. 6, 167 (2015).
Article
PubMed
PubMed Central
Google Scholar
Haase, V. H. Hypoxia-inducible factor-prolyl hydroxylase inhibitors in the treatment of anemia of chronic kidney disease. Kidney Int. Suppl. 11, 8–25 (2021).
Article
Google Scholar
Macdougall, I. C. et al. Antibody-mediated pure red cell aplasia in chronic kidney disease patients receiving erythropoiesis-stimulating agents: new insights. Kidney Int. 81, 727–732 (2012).
Article
CAS
PubMed
Google Scholar
Warnecke, C. et al. Differentiating the functional role of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha (EPAS-1) by the use of RNA interference: erythropoietin is a HIF-2alpha target gene in Hep3B and Kelly cells. FASEB J. 18, 1462–1464 (2004).
Article
CAS
PubMed
Google Scholar
Flamme, I. et al. Mimicking hypoxia to treat anemia: HIF-stabilizer BAY 85-3934 (molidustat) stimulates erythropoietin production without hypertensive effects. PLoS ONE 9, e111838 (2014).
Article
PubMed
PubMed Central
Google Scholar
Kapitsinou, P. P. et al. Hepatic HIF-2 regulates erythropoietic responses to hypoxia in renal anemia. Blood 116, 3039–3048 (2010).
Article
CAS
PubMed
PubMed Central
Google Scholar
Minamishima, Y. A. & Kaelin, W. G. Jr. Reactivation of hepatic EPO synthesis in mice after PHD loss. Science 329, 407 (2010).
Article
CAS
PubMed
PubMed Central
Google Scholar
Peyssonnaux, C. et al. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J. Clin. Invest. 117, 1926–1932 (2007).
Article
CAS
PubMed
PubMed Central
Google Scholar
Qian, Z. M. et al. Divalent metal transporter 1 is a hypoxia-inducible gene. J. Cell Physiol. 226, 1596–1603 (2011).
Article
CAS
PubMed
Google Scholar
Taylor, M. et al. Hypoxia-inducible factor-2alpha mediates the adaptive increase of intestinal ferroportin during iron deficiency in mice. Gastroenterology 140, 2044–2055 (2011).
Article
CAS
PubMed
Google Scholar
Singh, A. K. et al. Daprodustat for the treatment of anemia in patients not undergoing dialysis. N. Engl. J. Med. 385, 2313–2324 (2021).
Article
CAS
PubMed
Google Scholar
Singh, A. K. et al. Daprodustat for the treatment of anemia in patients undergoing dialysis. N. Engl. J. Med. 385, 2325–2335 (2021). This study reports the results from a randomized phase III clinical trial that demonstrated that HIF-PHDi daprodustat was noninferior to ESAs in cardiovascular safety and efficacy in correcting anaemia in patients with CKD undergoing dialysis.
Article
CAS
PubMed
Google Scholar
Koeppen, M. et al. Hypoxia-inducible factor 2-alpha-dependent induction of amphiregulin dampens myocardial ischemia-reperfusion injury. Nat. Commun. 9, 816 (2018).
Article
PubMed
PubMed Central
Google Scholar
Eltzschig, H. K., Bonney, S. K. & Eckle, T. Attenuating myocardial ischemia by targeting A2B adenosine receptors. Trends Mol. Med. 19, 345–354 (2013).
Article
CAS
PubMed
PubMed Central
Google Scholar
Bowser, J. L., Phan, L. H. & Eltzschig, H. K. The hypoxia-adenosine link during Intestinal Inflammation. J. Immunol. 200, 897–907 (2018).
Article
CAS
PubMed
Google Scholar
Vohwinkel, C. U., Hoegl, S. & Eltzschig, H. K. Hypoxia signaling during acute lung injury. J. Appl. Physiol. 119, 1157–1163 (2015).
Article
CAS
PubMed
PubMed Central
Google Scholar
Eckle, T. et al. Identification of hypoxia-inducible factor HIF-1A as transcriptional regulator of the A2B adenosine receptor during acute lung injury. J. Immunol. 192, 1249–1256 (2014).
Article
CAS
PubMed
Google Scholar
Vohwinkel, C. U. et al. HIF1A-dependent induction of alveolar epithelial PFKFB3 dampens acute lung injury. JCI Insight 7, e157855 (2022).
Article
PubMed
PubMed Central
Google Scholar
Zhao, C. et al. Deficiency of HIF-1alpha enhances influenza A virus replication by promoting autophagy in alveolar type II epithelial cells. Emerg. Microbes Infect. 9, 691–706 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
McClendon, J. et al. Hypoxia-inducible factor 1alpha signaling promotes repair of the alveolar epithelium after acute lung injury. Am. J. Pathol. 187, 1772–1786 (2017).
Article
CAS
PubMed
PubMed Central
Google Scholar
Gong, H. et al. HIF2alpha signaling inhibits adherens junctional disruption in acute lung injury. J. Clin. Invest. 125, 652–664 (2015).
Article
PubMed
PubMed Central
Google Scholar
Jiang, X. et al. Endothelial hypoxia-inducible factor-2alpha is required for the maintenance of airway microvasculature. Circulation 139, 502–517 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
Colgan, S. P., Furuta, G. T. & Taylor, C. T. Hypoxia and innate immunity: keeping up with the HIFsters. Annu. Rev. Immunol. 38, 341–363 (2020). This is an authoritative review on the importance of HIF in the regulation of innate immunity.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palazon, A., Goldrath, A. W., Nizet, V. & Johnson, R. S. HIF transcription factors, inflammation, and immunity. Immunity 41, 518–528 (2014).
Article
CAS
PubMed
PubMed Central
Google Scholar
Taylor, C. T. & Scholz, C. C. The effect of HIF on metabolism and immunity. Nat. Rev. Nephrol. 18, 573–587 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
McGettrick, A. F. & O’Neill, L. A. J. The role of HIF in immunity and inflammation. Cell Metab. 32, 524–536 (2020).
Article
CAS
PubMed
Google Scholar
Berg, N. K. et al. Hypoxia-inducible factor-dependent induction of myeloid-derived netrin-1 attenuates natural killer cell infiltration during endotoxin-induced lung injury. FASEB J. 35, e21334 (2021).
Article
CAS
PubMed
Google Scholar
Wu, G. et al. Hypoxia exacerbates inflammatory acute lung injury via the Toll-like receptor 4 signaling pathway. Front. Immunol. 9, 1667 (2018).
Article
PubMed
PubMed Central
Google Scholar
Wing, P. A. C. et al. Hypoxic and pharmacological activation of HIF inhibits SARS-CoV-2 infection of lung epithelial cells. Cell Rep. 35, 109020 (2021). This is the first study to show the potential benefit of HIF-PHDi during SARS-CoV-2 infection.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wing, P. A. C. et al. Hypoxia inducible factors regulate infectious SARS-CoV-2, epithelial damage and respiratory symptoms in a hamster COVID-19 model. PLoS Pathog. 18, e1010807 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakamura, M., Imamura, T., Sobajima, M. & Kinugawa, K. Initial experience of hypoxia-inducible factor prolyl hydroxylase inhibitors in patients with heart failure and renal anemia. Heart Vessels 38, 284–290 (2023).
Article
PubMed
Google Scholar
Wen, T., Zhang, X., Wang, Z. & Zhou, R. Hypoxia-inducible factor prolyl hydroxylase inhibitors in patients with renal anemia: a meta-analysis of randomized trials. Nephron 144, 572–582 (2020).
Article
CAS
PubMed
Google Scholar
Bartels, K., Karhausen, J., Clambey, E. T., Grenz, A. & Eltzschig, H. K. Perioperative organ injury. Anesthesiology 119, 1474–1489 (2013).
Article
PubMed
Google Scholar
Williams, G. W., Berg, N. K., Reskallah, A., Yuan, X. & Eltzschig, H. K. Acute respiratory distress syndrome: contemporary management and novel approaches during COVID-19. Anesthesiology 134, 270–282 (2021).
Article
CAS
PubMed
Google Scholar
Gumbert, S. D. et al. Perioperative acute kidney injury. Anesthesiology 132, 180–204 (2020).
Article
PubMed
Google Scholar
Macdougall, I. C. New anemia therapies: translating novel strategies from bench to bedside. Am. J. Kidney Dis. 59, 444–451 (2012).
Article
PubMed
Google Scholar
Agrawal, D. et al. Desidustat in anemia due to non-dialysis-dependent chronic kidney disease: a phase 3 study (DREAM-ND). Am. J. Nephrol. 53, 352–360 (2022).
Article
CAS
PubMed
Google Scholar
Maxwell, P. H. & Eckardt, K. U. HIF prolyl hydroxylase inhibitors for the treatment of renal anaemia and beyond. Nat. Rev. Nephrol. 12, 157–168 (2016). This is an authoritative review that discusses the advantages and challenges of using HIF-PHDis as treatment for renal anaemia.
Article
CAS
PubMed
Google Scholar
Percy, M. J. et al. Novel exon 12 mutations in the HIF2A gene associated with erythrocytosis. Blood 111, 5400–5402 (2008).
Article
CAS
PubMed
PubMed Central
Google Scholar
Percy, M. J. et al. A gain-of-function mutation in the HIF2A gene in familial erythrocytosis. N. Engl. J. Med. 358, 162–168 (2008).
Article
CAS
PubMed
PubMed Central
Google Scholar
Percy, M. J. et al. A family with erythrocytosis establishes a role for prolyl hydroxylase domain protein 2 in oxygen homeostasis. Proc. Natl Acad. Sci. USA 103, 654–659 (2006).
Article
CAS
PubMed
PubMed Central
Google Scholar
Beck, J., Henschel, C., Chou, J., Lin, A. & Del Balzo, U. Evaluation of the carcinogenic potential of roxadustat (FG-4592), a small molecule inhibitor of hypoxia-inducible factor prolyl hydroxylase in CD-1 mice and Sprague Dawley rats. Int. J. Toxicol. 36, 427–439 (2017).
Article
CAS
PubMed
Google Scholar
Provenzano, R. et al. Efficacy and cardiovascular safety of roxadustat for treatment of anemia in patients with non-dialysis-dependent CKD: pooled results of three randomized clinical trials. Clin. J. Am. Soc. Nephrol. 16, 1190–1200 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kiriakidis, S. et al. Complement C1q is hydroxylated by collagen prolyl 4 hydroxylase and is sensitive to off-target inhibition by prolyl hydroxylase domain inhibitors that stabilize hypoxia-inducible factor. Kidney Int. 92, 900–908 (2017).
Article
CAS
PubMed
PubMed Central
Google Scholar
Schejbel, L. et al. Molecular basis of hereditary C1q deficiency–revisited: identification of several novel disease-causing mutations. Genes Immun. 12, 626–634 (2011).
Article
CAS
PubMed
Google Scholar
Fallah, J. & Rini, B. I. HIF inhibitors: status of current clinical development. Curr. Oncol. Rep. 21, 6 (2019).
Article
PubMed
Google Scholar
Aquino-Galvez, A. et al. Effects of 2-methoxyestradiol on apoptosis and HIF-1alpha and HIF-2alpha expression in lung cancer cells under normoxia and hypoxia. Oncol. Rep. 35, 577–583 (2016).
Article
CAS
PubMed
Google Scholar
Gheorghiade, M., van Veldhuisen, D. J. & Colucci, W. S. Contemporary use of digoxin in the management of cardiovascular disorders. Circulation 113, 2556–2564 (2006).
Article
PubMed
Google Scholar
Zhang, H. et al. Digoxin and other cardiac glycosides inhibit HIF-1alpha synthesis and block tumor growth. Proc. Natl Acad. Sci. USA 105, 19579–19586 (2008).
Article
CAS
PubMed
PubMed Central
Google Scholar
Currie, G. M., Wheat, J. M. & Kiat, H. Pharmacokinetic considerations for digoxin in older people. Open Cardiovasc. Med. J. 5, 130–135 (2011).
Article
CAS
PubMed
PubMed Central
Google Scholar
Ren, X., Diao, X., Zhuang, J. & Wu, D. Structural basis for the allosteric inhibition of hypoxia-inducible factor (HIF)-2 by belzutifan. Mol. Pharmacol. 102, 240–247 (2022).
Article
CAS
Google Scholar
Rapisarda, A. et al. Identification of small molecule inhibitors of hypoxia-inducible factor 1 transcriptional activation pathway. Cancer Res. 62, 4316–4324 (2002).
CAS
PubMed
Google Scholar
Rapisarda, A. et al. Topoisomerase I-mediated inhibition of hypoxia-inducible factor 1: mechanism and therapeutic implications. Cancer Res. 64, 1475–1482 (2004).
Article
CAS
PubMed
Google Scholar
Welsh, S., Williams, R., Kirkpatrick, L., Paine-Murrieta, G. & Powis, G. Antitumor activity and pharmacodynamic properties of PX-478, an inhibitor of hypoxia-inducible factor-1alpha. Mol. Cancer Ther. 3, 233–244 (2004).
Article
CAS
PubMed
Google Scholar
Jacoby, J. J. et al. Treatment with HIF-1alpha antagonist PX-478 inhibits progression and spread of orthotopic human small cell lung cancer and lung adenocarcinoma in mice. J. Thorac. Oncol. 5, 940–949 (2010).
Article
PubMed
PubMed Central
Google Scholar
Koh, M. Y. et al. Molecular mechanisms for the activity of PX-478, an antitumor inhibitor of the hypoxia-inducible factor-1alpha. Mol. Cancer Ther. 7, 90–100 (2008).
Article
CAS
PubMed
Google Scholar
Miranda, E. et al. A cyclic peptide inhibitor of HIF-1 heterodimerization that inhibits hypoxia signaling in cancer cells. J. Am. Chem. Soc. 135, 10418–10425 (2013).
Article
CAS
PubMed
PubMed Central
Google Scholar
Burslem, G. M., Kyle, H. F., Nelson, A., Edwards, T. A. & Wilson, A. J. Hypoxia inducible factor (HIF) as a model for studying inhibition of protein-protein interactions. Chem. Sci. 8, 4188–4202 (2017).
Article
CAS
PubMed
PubMed Central
Google Scholar
Greenberger, L. M. et al. A RNA antagonist of hypoxia-inducible factor-1alpha, EZN-2968, inhibits tumor cell growth. Mol. Cancer Ther. 7, 3598–3608 (2008).
Article
CAS
PubMed
Google Scholar
Zimmer, M. et al. Small-molecule inhibitors of HIF-2a translation link its 5′UTR iron-responsive element to oxygen sensing. Mol. Cell 32, 838–848 (2008).
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang, D. L., Ghosh, M. C. & Rouault, T. A. The physiological functions of iron regulatory proteins in iron homeostasis – an update. Front. Pharmacol. 5, 124 (2014).
Article
PubMed
PubMed Central
Google Scholar
Dai, Z. et al. Therapeutic targeting of vascular remodeling and right heart failure in pulmonary arterial hypertension with a HIF-2alpha inhibitor. Am. J. Respir. Crit. Care Med. 198, 1423–1434 (2018). This study reports the beneficial therapeutic effect of pharmacological HIF2α inhibitor C76 in rodent models of pulmonary hypertension.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scheuermann, T. H. et al. Artificial ligand binding within the HIF2alpha PAS-B domain of the HIF2 transcription factor. Proc. Natl Acad. Sci. USA 106, 450–455 (2009).
Article
CAS
PubMed
PubMed Central
Google Scholar
Scheuermann, T. H. et al. Allosteric inhibition of hypoxia inducible factor-2 with small molecules. Nat. Chem. Biol. 9, 271–276 (2013).
Article
CAS
PubMed
PubMed Central
Google Scholar
Wehn, P. M. et al. Design and activity of specific hypoxia-inducible factor-2alpha (HIF-2alpha) inhibitors for the treatment of clear cell renal cell carcinoma: discovery of clinical candidate (S)-3-((2,2-difluoro-1-hydroxy-7-(methylsulfonyl)-2,3-dihydro-1 H-inden-4-yl)oxy)-5-fluorobenzonitrile (PT2385). J. Med. Chem. 61, 9691–9721 (2018).
Article
CAS
PubMed
Google Scholar
Courtney, K. D. et al. HIF-2 complex dissociation, target inhibition, and acquired resistance with PT2385, a first-in-class HIF-2 inhibitor, in patients with clear cell renal cell carcinoma. Clin. Cancer Res. 26, 793–803 (2020).
Article
CAS
PubMed
Google Scholar
Courtney, K. D. et al. Phase I dose-escalation trial of PT2385, a first-in-class hypoxia-inducible factor-2alpha antagonist in patients with previously treated advanced clear cell renal cell carcinoma. J. Clin. Oncol. 36, 867–874 (2018). This study reports the results from a first-in-human phase I clinical trial indicating a favourable safety profile and activity of HIF2α inhibitor PT2385 in patients with heavily pretreated ccRCC.
Article
CAS
PubMed
Google Scholar
Xu, R. et al. 3-[(1S,2S,3R)-2,3-Difluoro-1-hydroxy-7-methylsulfonylindan-4-yl]oxy-5-fluorobenzonitrile (PT2977), a hypoxia-inducible factor 2α (HIF-2α) inhibitor for the treatment of clear cell renal cell carcinoma. J. Med. Chem. 62, 6876–6893 (2019).
Article
CAS
PubMed
Google Scholar
Choueiri, T. K. et al. Inhibition of hypoxia-inducible factor-2alpha in renal cell carcinoma with belzutifan: a phase 1 trial and biomarker analysis. Nat. Med. 27, 802–805 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
No authors listed. FDA OK’s HIF2α inhibitor belzutifan. Cancer Discov. 11, 2360–2361 (2021).
Article
Google Scholar
Wong, S. C. et al. HIF2alpha-targeted RNAi therapeutic inhibits clear cell renal cell carcinoma. Mol. Cancer Ther. 17, 140–149 (2018).
Article
CAS
PubMed
Google Scholar
Ma, Y. et al. HIF2 inactivation and tumor suppression with a tumor-directed RNA-silencing drug in mice and humans. Clin. Cancer Res. 28, 5405–5418 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Muz, B., de la Puente, P., Azab, F. & Azab, A. K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia 3, 83–92 (2015).
Article
PubMed
PubMed Central
Google Scholar
Semenza, G. L. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol. Sci. 33, 207–214 (2012).
Article
CAS
PubMed
PubMed Central
Google Scholar
Rapisarda, A. et al. Schedule-dependent inhibition of hypoxia-inducible factor-1alpha protein accumulation, angiogenesis, and tumor growth by topotecan in U251-HRE glioblastoma xenografts. Cancer Res. 64, 6845–6848 (2004).
Article
CAS
PubMed
Google Scholar
Ardizzoni, A. et al. Topotecan, a new active drug in the second-line treatment of small-cell lung cancer: a phase II study in patients with refractory and sensitive disease. The European Organization for Research and Treatment of Cancer Early Clinical Studies Group and New Drug Development Office, and the Lung Cancer Cooperative Group. J. Clin. Oncol. 15, 2090–2096 (1997).
Article
CAS
PubMed
Google Scholar
Tibes, R. et al. Results from a phase I, dose-escalation study of PX-478, an orally available inhibitor of HIF-1α. J. Clin. Oncol. 28, 3076–3076 (2010).
Article
Google Scholar
Jeong, W. et al. Pilot trial of EZN-2968, an antisense oligonucleotide inhibitor of hypoxia-inducible factor-1 alpha (HIF-1alpha), in patients with refractory solid tumors. Cancer Chemother. Pharmacol. 73, 343–348 (2014).
Article
CAS
PubMed
Google Scholar
Wu, J. et al. Evaluation of a locked nucleic acid form of antisense oligo targeting HIF-1alpha in advanced hepatocellular carcinoma. World J. Clin. Oncol. 10, 149–160 (2019).
Article
PubMed
PubMed Central
Google Scholar
Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).
Article
Google Scholar
Kasherman, L., Siu, D. H. W., Woodford, R. & Harris, C. A. Angiogenesis inhibitors and immunomodulation in renal cell cancers: the past, present, and future. Cancers 14, 1406 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Pandey, A. K. et al. Mechanisms of VEGF (vascular endothelial growth factor) inhibitor-associated hypertension and vascular disease. Hypertension 71, e1–e8 (2018).
Article
CAS
PubMed
Google Scholar
Kamba, T. & McDonald, D. M. Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br. J. Cancer 96, 1788–1795 (2007).
Article
CAS
PubMed
PubMed Central
Google Scholar
Ganner, A. et al. VHL suppresses RAPTOR and inhibits mTORC1 signaling in clear cell renal cell carcinoma. Sci. Rep. 11, 14827 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Battelli, C. & Cho, D. C. mTOR inhibitors in renal cell carcinoma. Therapy 8, 359–367 (2011).
Article
CAS
PubMed
PubMed Central
Google Scholar
Toschi, A., Lee, E., Gadir, N., Ohh, M. & Foster, D. A. Differential dependence of hypoxia-inducible factors 1 alpha and 2 alpha on mTORC1 and mTORC2. J. Biol. Chem. 283, 34495–34499 (2008).
Article
CAS
PubMed
PubMed Central
Google Scholar
Motzer, R. J. et al. Nivolumab versus everolimus in patients with advanced renal cell carcinoma: updated results with long-term follow-up of the randomized, open-label, phase 3 CheckMate 025 trial. Cancer 126, 4156–4167 (2020).
Article
CAS
PubMed
Google Scholar
Raval, R. R. et al. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol. Cell Biol. 25, 5675–5686 (2005).
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen, W. et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 539, 112–117 (2016).
Article
CAS
PubMed
PubMed Central
Google Scholar
Pelosci, A. LITESPARK-005 trial reveals PFS benefit of belzutifan in advanced RCC. Cancer Network, Home of the Journal ONCOLOGY (23 August 2023).
Stransky, L. A. et al. Sensitivity of VHL mutant kidney cancers to HIF2 inhibitors does not require an intact p53 pathway. Proc. Natl Acad. Sci. USA 119, e2120403119 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Davis, L. et al. Targeting HIF-2alpha in the tumor microenvironment: redefining the role of HIF-2alpha for solid cancer therapy. Cancers 14, 1259 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Feldman, D. R. et al. Phase I trial of bevacizumab plus escalated doses of sunitinib in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 27, 1432–1439 (2009).
Article
CAS
PubMed
PubMed Central
Google Scholar
Redlich, A. et al. Pseudohypoxic pheochromocytomas and paragangliomas dominate in children. Pediatr. Blood Cancer 68, e28981 (2021).
Article
CAS
PubMed
Google Scholar
Yang, C. et al. Germ-line PHD1 and PHD2 mutations detected in patients with pheochromocytoma/paraganglioma-polycythemia. J. Mol. Med. 93, 93–104 (2015).
Article
CAS
PubMed
Google Scholar
Zhuang, Z. et al. Somatic HIF2A gain-of-function mutations in paraganglioma with polycythemia. N. Engl. J. Med. 367, 922–930 (2012).
Article
CAS
PubMed
PubMed Central
Google Scholar
Pacak, K. et al. New syndrome of paraganglioma and somatostatinoma associated with polycythemia. J. Clin. Oncol. 31, 1690–1698 (2013).
Article
PubMed
PubMed Central
Google Scholar
Yang, C. et al. Novel HIF2A mutations disrupt oxygen sensing, leading to polycythemia, paragangliomas, and somatostatinomas. Blood 121, 2563–2566 (2013).
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang, H. et al. A transgenic mouse model of Pacak–Zhuang syndrome with an EPAS1 gain-of-function mutation. Cancers 11, 667 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
Maron, B. A. Revised definition of pulmonary hypertension and approach to management: a clinical primer. J. Am. Heart Assoc. 12, e029024 (2023).
Article
PubMed
PubMed Central
Google Scholar
He, M. et al. Hypoxia induces the dysfunction of human endothelial colony-forming cells via HIF-1alpha signaling. Respir. Physiol. Neurobiol. 247, 87–95 (2018).
Article
CAS
PubMed
Google Scholar
Shan, F., Li, J. & Huang, Q. Y. HIF-1 alpha-induced up-regulation of miR-9 contributes to phenotypic modulation in pulmonary artery smooth muscle cells during hypoxia. J. Cell Physiol. 229, 1511–1520 (2014).
Article
CAS
PubMed
Google Scholar
Zeng, Y. et al. Hypoxia inducible factor-1 mediates expression of miR-322: potential role in proliferation and migration of pulmonary arterial smooth muscle cells. Sci. Rep. 5, 12098 (2015).
Article
PubMed
PubMed Central
Google Scholar
Luo, Y. et al. CD146-HIF-1alpha hypoxic reprogramming drives vascular remodeling and pulmonary arterial hypertension. Nat. Commun. 10, 3551 (2019).
Article
PubMed
PubMed Central
Google Scholar
Tang, H. et al. Endothelial HIF-2alpha contributes to severe pulmonary hypertension due to endothelial-to-mesenchymal transition. Am. J. Physiol. Lung Cell Mol. Physiol. 314, L256–L275 (2018).
PubMed
Google Scholar
Hu, C. J. et al. Suppression of HIF2 signalling attenuates the initiation of hypoxia-induced pulmonary hypertension. Eur. Respir. J. 54, 1900378 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim, Y. M. et al. Hypoxia-inducible factor-1alpha in pulmonary artery smooth muscle cells lowers vascular tone by decreasing myosin light chain phosphorylation. Circ. Res. 112, 1230–1233 (2013).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kojima, H. et al. Hypoxia-inducible factor-1 alpha deletion in myeloid lineage attenuates hypoxia-induced pulmonary hypertension. Physiol. Rep. 7, e14025 (2019).
Article
PubMed
PubMed Central
Google Scholar
Yu, Y. A. et al. Nonclassical monocytes sense hypoxia, regulate pulmonary vascular remodeling, and promote pulmonary hypertension. J. Immunol. 204, 1474–1485 (2020).
Article
CAS
PubMed
Google Scholar
Cowburn, A. S. et al. HIF2alpha–arginase axis is essential for the development of pulmonary hypertension. Proc. Natl Acad. Sci. USA 113, 8801–8806 (2016).
Article
CAS
PubMed
PubMed Central
Google Scholar
Labrousse-Arias, D. et al. HIF-2alpha-mediated induction of pulmonary thrombospondin-1 contributes to hypoxia-driven vascular remodelling and vasoconstriction. Cardiovasc. Res. 109, 115–130 (2016).
Article
CAS
PubMed
Google Scholar
Wang, S. et al. EPAS1 (endothelial PAS domain protein 1) orchestrates transactivation of endothelial ICAM1 (intercellular adhesion molecule 1) by small nucleolar RNA host gene 5 (SNHG5) to promote hypoxic pulmonary hypertension. Hypertension 78, 1080–1091 (2021).
Article
CAS
PubMed
Google Scholar
Tan, Q. et al. Erythrocytosis and pulmonary hypertension in a mouse model of human HIF2A gain of function mutation. J. Biol. Chem. 288, 17134–17144 (2013).
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang, Y. et al. Topotecan prevents hypoxia-induced pulmonary arterial hypertension and inhibits hypoxia-inducible factor-1alpha and TRPC channels. Int. J. Biochem. Cell Biol. 104, 161–170 (2018).
Article
CAS
PubMed
Google Scholar
Ghosh, M. C. et al. Therapeutic inhibition of HIF-2alpha reverses polycythemia and pulmonary hypertension in murine models of human diseases. Blood 137, 2509–2519 (2021). This study shows the beneficial therapeutic effect of pharmacological HIF2α inhibitor belzutifan in a murine model of polycythaemia, pulmonary hypertension, pulmonary fibrosis and complications due to gain-of-function mutation of HIF2A.
Article
CAS
PubMed
PubMed Central
Google Scholar
Campochiaro, P. A. Ocular neovascularization. J. Mol. Med. 91, 311–321 (2013).
Article
CAS
PubMed
Google Scholar
Ozaki, H. et al. Hypoxia inducible factor-1alpha is increased in ischemic retina: temporal and spatial correlation with VEGF expression. Invest. Ophthalmol. Vis. Sci. 40, 182–189 (1999).
CAS
PubMed
Google Scholar
Kelly, B. D. et al. Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ. Res. 93, 1074–1081 (2003).
Article
CAS
PubMed
Google Scholar
Barben, M., Schori, C., Samardzija, M. & Grimm, C. Targeting Hif1a rescues cone degeneration and prevents subretinal neovascularization in a model of chronic hypoxia. Mol. Neurodegener. 13, 12 (2018).
Article
PubMed
PubMed Central
Google Scholar
Dioum, E. M., Clarke, S. L., Ding, K., Repa, J. J. & Garcia, J. A. HIF-2alpha-haploinsufficient mice have blunted retinal neovascularization due to impaired expression of a proangiogenic gene battery. Invest. Ophthalmol. Vis. Sci. 49, 2714–2720 (2008).
Article
PubMed
Google Scholar
Qin, Y. et al. PAI-1 is a vascular cell-specific HIF-2-dependent angiogenic factor that promotes retinal neovascularization in diabetic patients. Sci. Adv. 8, eabm1896 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeng, M. et al. The HIF-1 antagonist acriflavine: visualization in retina and suppression of ocular neovascularization. J. Mol. Med. 95, 417–429 (2017).
Article
CAS
PubMed
Google Scholar
Usui-Ouchi, A. et al. An allosteric peptide inhibitor of HIF-1alpha regulates hypoxia-induced retinal neovascularization. Proc. Natl Acad. Sci. USA 117, 28297–28306 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Miwa, Y. et al. Pharmacological HIF inhibition prevents retinal neovascularization with improved visual function in a murine oxygen-induced retinopathy model. Neurochem. Int. 128, 21–31 (2019).
Article
CAS
PubMed
Google Scholar
Pan, X. & Lv, Y. Effects and mechanism of action of PX-478 in oxygen-induced retinopathy in mice. Ophthalmic Res. 63, 182–193 (2020).
Article
CAS
PubMed
Google Scholar
Cheng, X. et al. Marked and rapid effects of pharmacological HIF-2alpha antagonism on hypoxic ventilatory control. J. Clin. Invest. 130, 2237–2251 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Macias, D. et al. HIF-2alpha is essential for carotid body development and function. eLife 7, e34681 (2018).
Article
PubMed
PubMed Central
Google Scholar
Cho, H. et al. On-target efficacy of a HIF-2alpha antagonist in preclinical kidney cancer models. Nature 539, 107–111 (2016).
Article
CAS
PubMed
PubMed Central
Google Scholar
Watts, E. R. & Walmsley, S. R. Inflammation and hypoxia: HIF and PHD isoform selectivity. Trends Mol. Med. 25, 33–46 (2019).
Article
CAS
PubMed
Google Scholar
Lee, J. W. et al. Transcription-independent induction of ERBB1 through hypoxia-inducible factor 2A provides cardioprotection during ischemia and reperfusion. Anesthesiology 132, 763–780 (2020).
Article
CAS
PubMed
Google Scholar
Zuk, A. et al. Preclinical characterization of vadadustat (AKB-6548), an oral small molecule hypoxia-inducible factor prolyl-4-hydroxylase inhibitor, for the potential treatment of renal anemia. J. Pharmacol. Exp. Ther. 383, 11–24 (2022).
Article
CAS
PubMed
Google Scholar
Li, J. et al. PMN-derived netrin-1 attenuates cardiac ischemia-reperfusion injury via myeloid ADORA2B signaling. J. Exp. Med. 218, e20210008 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruan, W. et al. The hypoxia-adenosine link during myocardial ischemia-reperfusion injury. Biomedicines 10, 1939 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Conrad, C. & Eltzschig, H. K. Disease mechanisms of perioperative organ injury. Anesth. Analg. 131, 1730–1750 (2020).
Article
PubMed
PubMed Central
Google Scholar
Hara, K., Takahashi, N., Wakamatsu, A. & Caltabiano, S. Pharmacokinetics, pharmacodynamics and safety of single, oral doses of GSK1278863, a novel HIF-prolyl hydroxylase inhibitor, in healthy Japanese and Caucasian subjects. Drug. Metab. Pharmacokinet. 30, 410–418 (2015).
Article
CAS
PubMed
Google Scholar
Kansagra, K. A. et al. Phase I clinical study of ZYAN1, a novel prolyl-hydroxylase (PHD) inhibitor to evaluate the safety, tolerability, and pharmacokinetics following oral administration in healthy volunteers. Clin. Pharmacokinet. 57, 87–102 (2018).
Article
CAS
PubMed
Google Scholar
Parmar, D. V. et al. Outcomes of desidustat treatment in people with anemia and chronic kidney disease: a phase 2 study. Am. J. Nephrol. 49, 470–478 (2019).
Article
CAS
PubMed
Google Scholar
Bottcher, M. et al. First-in-man-proof of concept study with molidustat: a novel selective oral HIF-prolyl hydroxylase inhibitor for the treatment of renal anaemia. Br. J. Clin. Pharmacol. 84, 1557–1565 (2018).
Article
CAS
PubMed
PubMed Central
Google Scholar
Beck, H. et al. Discovery of molidustat (BAY 85-3934): a small-molecule oral HIF-prolyl hydroxylase (HIF-PH) inhibitor for the treatment of renal anemia. ChemMedChem 13, 988–1003 (2018).
Article
CAS
PubMed
PubMed Central
Google Scholar
Czock, D. & Keller, F. Clinical pharmacokinetics and pharmacodynamics of roxadustat. Clin. Pharmacokinet. 61, 347–362 (2022).
Article
CAS
PubMed
Google Scholar
Provenzano, R. et al. Oral hypoxia–inducible factor prolyl hydroxylase inhibitor roxadustat (FG-4592) for the treatment of anemia in patients with CKD. Clin. J. Am. Soc. Nephrol. 11, 982–991 (2016).
Article
CAS
PubMed
PubMed Central
Google Scholar
Shibata, T. et al. Evaluation of food and spherical carbon adsorbent effects on the pharmacokinetics of roxadustat in healthy nonelderly adult male japanese subjects. Clin. Pharmacol. Drug. Dev. 8, 304–313 (2019).
Article
CAS
PubMed
Google Scholar
Dhillon, S. Roxadustat: first global approval. Drugs 79, 563–572 (2019).
Article
CAS
PubMed
Google Scholar
Provenzano, R. et al. Roxadustat (FG-4592) versus epoetin alfa for anemia in patients receiving maintenance hemodialysis: a phase 2, randomized, 6-to 19-week, open-label, active-comparator, dose-ranging, safety and exploratory efficacy study. Am. J. Kidney Dis. 67, 912–924 (2016).
Article
CAS
PubMed
Google Scholar
Chen, N., Hao, C. & Liu, B. A phase 3, randomized, open-label, active-controlled study of efficacy and safety of roxadustat for treatment of anemia in subjects with CKD on dialysis. J. Am. Soc. Nephrol. 29, B5 (2018).
Google Scholar
Besarab, A. et al. Roxadustat (FG-4592): correction of anemia in incident dialysis patients. J. Am. Soc. Nephrol. 27, 1225–1233 (2016).
Article
CAS
PubMed
Google Scholar
Besarab, A. et al. Randomized placebo-controlled dose-ranging and pharmacodynamics study of roxadustat (FG-4592) to treat anemia in nondialysis-dependent chronic kidney disease (NDD-CKD) patients. Nephrol. Dial. Transplant. 30, 1665–1673 (2015).
Article
CAS
PubMed
PubMed Central
Google Scholar
Chavan, A. et al. Effect of moderate hepatic impairment on the pharmacokinetics of vadadustat, an oral hypoxia-inducible factor prolyl hydroxylase inhibitor. Clin. Pharmacol. Drug. Dev. 10, 950–958 (2021).
Article
CAS
PubMed
Google Scholar
Nwogu, J. I. et al. Inhibition of collagen synthesis with prolyl 4-hydroxylase inhibitor improves left ventricular function and alters the pattern of left ventricular dilatation after myocardial infarction. Circulation 104, 2216–2221 (2001).
Article
CAS
PubMed
Google Scholar
Xi, L., Taher, M., Yin, C., Salloum, F. & Kukreja, R. C. Cobalt chloride induces delayed cardiac preconditioning in mice through selective activation of HIF-1α and AP-1 and iNOS signaling. Am. J. Physiol. Heart Circ. Physiol. 287, H2369–H2375 (2004).
Article
CAS
PubMed
Google Scholar
Bao, W. et al. Chronic inhibition of hypoxia-inducible factor prolyl 4-hydroxylase improves ventricular performance, remodeling, and vascularity after myocardial infarction in the rat. J. Cardiovasc. Pharmacol. 56, 147–155 (2010).
Article
CAS
PubMed
Google Scholar
Signore, P. E. et al. A small-molecule inhibitor of hypoxia-inducible factor prolyl hydroxylase improves obesity, nephropathy and cardiomyopathy in obese ZSF1 rats. PLoS ONE 16, e0255022 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Philipp, S. et al. Stabilization of hypoxia inducible factor rather than modulation of collagen metabolism improves cardiac function after acute myocardial infarction in rats. Eur. J. Heart Fail. 8, 347–354 (2006).
Article
CAS
PubMed
Google Scholar
Vogler, M. et al. Pre-and post-conditional inhibition of prolyl-4-hydroxylase domain enzymes protects the heart from an ischemic insult. Pflügers Arch. 467, 2141–2149 (2015).
Article
CAS
PubMed
Google Scholar
Keränen, M. et al. Differential effects of pharmacological HIF preconditioning of donors versus recipients in rat cardiac allografts. Am. J. Transplant. 13, 600–610 (2013).
Article
PubMed
Google Scholar
Eckle, T., Köhler, D., Lehmann, R., El Kasmi, K. C. & Eltzschig, H. K. Hypoxia-inducible factor-1 is central to cardioprotection: a new paradigm for ischemic preconditioning. Circulation 118, 166–175 (2008).
Article
CAS
PubMed
Google Scholar
Natarajan, R., Salloum, F. N., Fisher, B. J., Kukreja, R. C. & Fowler, A. A. III Hypoxia inducible factor-1 activation by prolyl 4-hydroxylase-2 gene silencing attenuates myocardial ischemia reperfusion injury. Circ. Res. 98, 133–140 (2006).
Article
CAS
PubMed
Google Scholar
Natarajan, R. et al. Activation of hypoxia-inducible factor-1 via prolyl-4 hydoxylase-2 gene silencing attenuates acute inflammatory responses in postischemic myocardium. Am. J. Physiol. Heart Circ. Physiol. 293, H1571–H1580 (2007).
Article
CAS
PubMed
Google Scholar
Ockaili, R. et al. HIF-1 activation attenuates postischemic myocardial injury: role for heme oxygenase-1 in modulating microvascular chemokine generation. Am. J. Physiol. Heart Circ. Physiol. 289, H542–H548 (2005).
Article
CAS
PubMed
Google Scholar
Zhao, H.-X. et al. Attenuation of myocardial injury by postconditioning: role of hypoxia inducible factor-1α. Basic Res. Cardiol. 105, 109–118 (2010).
Article
CAS
PubMed
Google Scholar
Huang, M. et al. Short hairpin RNA interference therapy for ischemic heart disease. Circulation 118, S226–S233 (2008).
Article
CAS
PubMed
PubMed Central
Google Scholar
Hyvärinen, J. et al. Hearts of hypoxia-inducible factor prolyl 4-hydroxylase-2 hypomorphic mice show protection against acute ischemia–reperfusion injury. J. Biol. Chem. 285, 13646–13657 (2010).
Article
PubMed
PubMed Central
Google Scholar
Kerkelä, R. et al. Activation of hypoxia response in endothelial cells contributes to ischemic cardioprotection. Mol. Cell. Biol. 33, 3321–3329 (2013).
Article
PubMed
PubMed Central
Google Scholar
Hölscher, M. et al. Cardiomyocyte-specific prolyl-4-hydroxylase domain 2 knock out protects from acute myocardial ischemic injury. J. Biol. Chem. 286, 11185–11194 (2011).
Article
PubMed
PubMed Central
Google Scholar
Adluri, R. S. et al. Disruption of hypoxia-inducible transcription factor-prolyl hydroxylase domain-1 (PHD-1−/−) attenuates ex vivo myocardial ischemia/reperfusion injury through hypoxia-inducible factor-1α transcription factor and its target genes in mice. Antioxid. Redox Signal. 15, 1789–1797 (2011).
Article
CAS
PubMed
PubMed Central
Google Scholar
Oriowo, B. et al. Targeted gene deletion of prolyl hydroxylase domain protein 3 triggers angiogenesis and preserves cardiac function by stabilizing hypoxia inducible factor 1 alpha following myocardial infarction. Curr. Pharm. Des. 20, 1305–1310 (2014).
Article
CAS
PubMed
Google Scholar
Xie, L. et al. Depletion of PHD3 protects heart from ischemia/reperfusion injury by inhibiting cardiomyocyte apoptosis. J. Mol. Cell. Cardiol. 80, 156–165 (2015).
Article
CAS
PubMed
PubMed Central
Google Scholar
Deguchi, H. et al. Roxadustat markedly reduces myocardial ischemia reperfusion injury in mice. Circ. J. 84, 1028–1033 (2020).
Article
CAS
PubMed
Google Scholar
Zhong, Z. et al. Activation of the oxygen-sensing signal cascade prevents mitochondrial injury after mouse liver ischemia-reperfusion. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G823–G832 (2008).
Article
CAS
PubMed
PubMed Central
Google Scholar
Harnoss, J. M. et al. Prolyl hydroxylase inhibition mitigates allograft injury during liver transplant. Transplantation 106, e430–e440 (2022).
Article
CAS
PubMed
Google Scholar
Harnoss, J. M. et al. Prolyl hydroxylase inhibition enhances liver regeneration without induction of tumor growth. Ann. Surg. 265, 782–791 (2017).
Article
PubMed
Google Scholar
Schneider, M. et al. Loss or silencing of the PHD1 prolyl hydroxylase protects livers of mice against ischemia/reperfusion injury. Gastroenterology 138, 1143–1154 (2010). e1141–1142.
Article
CAS
PubMed
Google Scholar
Liu, J. et al. Double knockdown of PHD1 and Keap1 attenuated hypoxia-induced injuries in hepatocytes. Front. Physiol. 8, 291 (2017).
Article
CAS
PubMed
PubMed Central
Google Scholar
Mollenhauer, M. et al. Deficiency of the oxygen sensor PHD1 augments liver regeneration after partial hepatectomy. Langenbecks Arch. Surg. 397, 1313–1322 (2012).
Article
PubMed
Google Scholar
Matsumoto, M. et al. Induction of renoprotective gene expression by cobalt ameliorates ischemic injury of the kidney in rats. J. Am. Soc. Nephrol. 14, 1825–1832 (2003).
Article
PubMed
Google Scholar
Bernhardt, W. M. et al. Preconditional activation of hypoxia-inducible factors ameliorates ischemic acute renal failure. J. Am. Soc. Nephrol. 17, 1970–1978 (2006).
Article
CAS
PubMed
Google Scholar
Xie, D. et al. Kidney-targeted delivery of prolyl hydroxylase domain protein 2 small interfering RNA with nanoparticles alleviated renal ischemia/reperfusion injury. J. Pharmacol. Exp. Ther. 378, 235–243 (2021).
Article
CAS
PubMed
Google Scholar
Jamadarkhana, P. et al. Treatment with a novel hypoxia-inducible factor hydroxylase inhibitor (TRC160334) ameliorates ischemic acute kidney injury. Am. J. Nephrol. 36, 208–218 (2012).
Article
CAS
PubMed
Google Scholar
Yang, Y. et al. Hypoxia-inducible factor prolyl hydroxylase inhibitor roxadustat (FG-4592) protects against cisplatin-induced acute kidney injury. Clin. Sci. 132, 825–838 (2018).
Article
CAS
Google Scholar
Ito, M. et al. Prolyl hydroxylase inhibition protects the kidneys from ischemia via upregulation of glycogen storage. Kidney Int. 97, 687–701 (2020).
Article
CAS
PubMed
Google Scholar
Bernhardt, W. et al. Donor treatment with a PHD-inhibitor activating HIFs prevents graft injury and prolongs survival in an allogenic kidney transplant model. Proc. Natl Acad. Sci. USA 106, 21276–21281 (2009).
Article
CAS
PubMed
PubMed Central
Google Scholar
Tambuwala, M. M. et al. Loss of prolyl hydroxylase-1 protects against colitis through reduced epithelial cell apoptosis and increased barrier function. Gastroenterology 139, 2093–2101 (2010).
Article
CAS
PubMed
Google Scholar
Cummins, E. P. et al. The hydroxylase inhibitor dimethyloxalylglycine is protective in a murine model of colitis. Gastroenterology 134, 156–165.e151 (2008).
Article
CAS
PubMed
Google Scholar
Tambuwala, M. M. et al. Targeted delivery of the hydroxylase inhibitor DMOG provides enhanced efficacy with reduced systemic exposure in a murine model of colitis. J. Control. Release 217, 221–227 (2015).
Article
CAS
PubMed
Google Scholar
Manresa, M. C. et al. Hydroxylase inhibition regulates inflammation-induced intestinal fibrosis through the suppression of ERK-mediated TGF-β1 signaling. Am. J. Physiol. Gastrointest. Liver Physiol. 311, G1076–G1090 (2016).
Article
PubMed
Google Scholar
Halligan, D. N. et al. Hypoxia-inducible factor hydroxylase inhibition enhances the protective effects of cyclosporine in colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 317, G90–G97 (2019).
Article
CAS
PubMed
Google Scholar
Robinson, A. et al. Mucosal protection by hypoxia-inducible factor prolyl hydroxylase inhibition. Gastroenterology 134, 145–155 (2008).
Article
CAS
PubMed
Google Scholar
Marks, E. et al. Oral delivery of prolyl hydroxylase inhibitor: AKB-4924 promotes localized mucosal healing in a mouse model of colitis. Inflamm. Bowel Dis. 21, 267–275 (2015).
Article
PubMed
Google Scholar
Keely, S. et al. Contribution of epithelial innate immunity to systemic protection afforded by prolyl hydroxylase inhibition in murine colitis. Mucosal Immunol. 7, 114–123 (2014).
Article
CAS
PubMed
Google Scholar
Van Welden, S. et al. Haematopoietic prolyl hydroxylase‐1 deficiency promotes M2 macrophage polarization and is both necessary and sufficient to protect against experimental colitis. J. Pathol. 241, 547–558 (2017).
Article
PubMed
Google Scholar
Okumura, C. Y. et al. A new pharmacological agent (AKB-4924) stabilizes hypoxia inducible factor-1 (HIF-1) and increases skin innate defenses against bacterial infection. J. Mol. Med. 90, 1079–1089 (2012).
Article
CAS
PubMed
Google Scholar
Zinkernagel, A. S., Peyssonnaux, C., Johnson, R. S. & Nizet, V. Pharmacologic augmentation of hypoxia-inducible factor—1α with mimosine boosts the bactericidal capacity of phagocytes. J. Infect. Dis. 197, 214–217 (2008).
Article
CAS
PubMed
Google Scholar
Hirota, S. A. et al. Hypoxia-inducible factor signaling provides protection in Clostridium difficile-induced intestinal injury. Gastroenterology 139, 259–269.e253 (2010).
Article
CAS
PubMed
Google Scholar
Schaible, B. et al. Hypoxia modulates infection of epithelial cells by Pseudomonas aeruginosa. PLoS ONE 8, e56491 (2013).
Article
CAS
PubMed
PubMed Central
Google Scholar
Hirai, K., Furusho, H., Hirota, K. & Sasaki, H. Activation of hypoxia-inducible factor 1 attenuates periapical inflammation and bone loss. Int. J. Oral Sci. 10, 12 (2018).
Article
PubMed
PubMed Central
Google Scholar
Wood, J. G. et al. Heme oxygenase‐1 upregulation following prolyl hydroxylase inhibition attenuates hypoxia‐induced microvascular inflammation. FASEB J. 23, 762.719 (2009).
Article
Google Scholar
Howard, J. M. et al. Upregulation of HIF-1 attenuates hemorrhagic shock/resuscitation-induced leukocyte adherence via an iNOS-dependent pathway. J. Am. Coll. Surg. 207, S39 (2008).
Article
Google Scholar
Figg, W. D. Jr. et al. Structural basis of prolyl hydroxylase domain inhibition by molidustat. ChemMedChem 16, 2082–2088 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu, D. et al. Bidirectional modulation of HIF-2 activity through chemical ligands. Nat. Chem. Biol. 15, 367–376 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
Wallace, E. M. et al. A small-molecule antagonist of HIF2alpha is efficacious in preclinical models of renal cell carcinoma. Cancer Res. 76, 5491–5500 (2016).
Article
CAS
PubMed
Google Scholar
Haase, V. H. HIF-prolyl hydroxylases as therapeutic targets in erythropoiesis and iron metabolism. Hemodial. Int. 21, S110–S124 (2017).
Article
PubMed
PubMed Central
Google Scholar
Eckle, T. et al. Crosstalk between the equilibrative nucleoside transporter ENT2 and alveolar Adora2b adenosine receptors dampens acute lung injury. FASEB J. 27, 3078–3089 (2013).
Article
CAS
PubMed
PubMed Central
Google Scholar
Aherne, C. M. et al. Coordination of ENT2-dependent adenosine transport and signaling dampens mucosal inflammation. JCI Insight 3, e121521 (2018).
Article
PubMed
PubMed Central
Google Scholar
Ruan, W. et al. Targeting myocardial equilibrative nucleoside transporter ENT1 provides cardioprotection by enhancing myeloid Adora2b signaling. JCI Insight 8, e166011 (2023).
Article
PubMed
PubMed Central
Google Scholar
Wang, G. L. & Semenza, G. L. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc. Natl Acad. Sci. USA 90, 4304–4308 (1993).
Article
CAS
PubMed
PubMed Central
Google Scholar
Fraisl, P., Aragones, J. & Carmeliet, P. Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease. Nat. Rev. Drug. Discov. 8, 139–152 (2009).
Article
CAS
PubMed
Google Scholar
Aragones, J. et al. Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nat. Genet. 40, 170–180 (2008).
Article
CAS
PubMed
Google Scholar
Ruan, W., Yuan, X. & Eltzschig, H. K. Circadian rhythm as a therapeutic target. Nat. Rev. Drug. Discov. 20, 287–307 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Semenza, G. L. HIF-1 mediates the Warburg effect in clear cell renal carcinoma. J. Bioenerg. Biomembr. 39, 231–234 (2007).
Article
CAS
PubMed
Google Scholar
Carmeliet, P. et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394, 485–490 (1998).
Article
CAS
PubMed
Google Scholar
Forsythe, J. A. et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell Biol. 16, 4604–4613 (1996).
Article
CAS
PubMed
PubMed Central
Google Scholar
Eltzschig, H. K., Weissmuller, T., Mager, A. & Eckle, T. Nucleotide metabolism and cell-cell interactions. Methods Mol. Biol. 341, 73–87 (2006).
CAS
PubMed
Google Scholar
Synnestvedt, K. et al. Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J. Clin. Invest. 110, 993–1002 (2002).
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahmad, A. et al. Adenosine A2A receptor is a unique angiogenic target of HIF-2alpha in pulmonary endothelial cells. Proc. Natl Acad. Sci. USA 106, 10684–10689 (2009).
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohta, A. & Sitkovsky, M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414, 916–920 (2001).
Article
CAS
PubMed
Google Scholar
Morote-Garcia, J. C., Rosenberger, P., Kuhlicke, J. & Eltzschig, H. K. HIF-1-dependent repression of adenosine kinase attenuates hypoxia-induced vascular leak. Blood 111, 5571–5580 (2008).
Article
CAS
PubMed
Google Scholar
Yuan, X. et al. Alternative adenosine receptor activation: the netrin-Adora2b link. Front. Pharmacol. 13, 944994 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Heck-Swain, K. L. et al. Myeloid hypoxia-inducible factor HIF1A provides cardio-protection during ischemia and reperfusion via induction of netrin-1. Front. Cardiovasc. Med. 9, 970415 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohta, A. A metabolic immune checkpoint: adenosine in tumor microenvironment. Front. Immunol. 7, 109 (2016).
Article
PubMed
PubMed Central
Google Scholar
Choudhry, H. & Harris, A. L. Advances in hypoxia-inducible factor biology. Cell Metab. 27, 281–298 (2018).
Article
CAS
PubMed
Google Scholar