The structure and physical properties of a packaged bacteriophage particle

[ad_1]

  • Jiang, W. & Tang, L. Atomic cryo-EM structures of viruses. Curr. Opin. Struct. Biol. 46, 122–129 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luque, D. & Castón, J. R. Cryo-electron microscopy for the study of virus assembly. Nat. Chem. Biol. 16, 231–239 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai, X. et al. In situ structures of the genome and genome-delivery apparatus in a single-stranded RNA virus. Nature 541, 112–116 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ilca, S. et al. Multiple liquid crystalline geometries of highly compacted nucleic acid in a dsRNA virus. Nature 570, 252–256 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Duda, R. L. & Teschke, C. M. The amazing HK97 fold: versatile results of modest differences. Curr. Opin. Virol. 36, 9–16 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, D. E. et al. The bacte-riophage φ29 portal motor can package DNA against a large internal force. Nature 413, 748 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ganji, M. et al. Real-time imaging of DNA loop extrusion by condensin. Science 360, 102–105 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Speir, J. A. & Johnson, J. E. Nucleic acid packaging in viruses. Curr. Opin. Struct. Biol. 22, 65–71 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson, J. E. & Chiu, W. DNA packaging and delivery machines in tailed bacteriophages. Curr. Opin. Struct. Biol. 17, 237–43 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zandi, R., Dragnea, B., Travesset, A. & Podgornik, R. On virus growth and form. Phys. Rep. 847, 1–102 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Tzlil, S., Kindt, J. T., Gelbart, W. M. & Ben-Shaul, A. Forces and pressures in DNA packaging and release from viral capsids. Biophys. J. 84, 1616–1627 (2003).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Purohit, P. K., Kondev, J. & Phillips, R. Mechanics of DNA packaging in viruses. Proc. Natl Acad. Sci. USA 100, 3173–8 (2003).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kindt, J., Tzlil, S., Ben-Shaul, A. & Gelbart, W. M. DNA packaging and ejection forces in bacteriophage. Proc. Natl Acad. Sci. USA 98, 13671–13674 (2001).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perlmutter, J. D., Qiao, C. & Hagan, M. F. Viral genome structures are optimal for capsid assembly. eLife 2, e00632 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, R. K. et al. The prohead-I structure of bacteriophage HK97: implications for scaffold-mediated control of particle assembly and maturation. J. Mol. Biol. 408, 541–554 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Earnshaw, W. C. & Harrison, S. C. DNA arrangement in isometric phage heads. Nature 268, 598–602 (1977).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Duda, R. L. et al. Structure and energetics of encapsidated DNA in bacteriophage HK97 studied by scanning calorimetry and cryo-electron microscopy. J. Mol. Biol. 391, 471–483 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lander, G. C. et al. The structure of an infectious P22 virion shows the signal for headful DNA packaging. Science 312, 1791–1795 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bloomfield, V. A. DNA condensation by multivalent cations. Biopolymers 44, 269–282 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grosberg, A. Y., Nguyen, T. T. & Shklovskii, B. I. Colloquium: the physics of charge inversion in chemical and biological systems. Rev. Mod. Phys. 74, 329–345 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fuller, D. N. et al. Ionic effects on viral DNA packaging and portal motor function in bacteriophage φ29. Proc. Natl Acad. Sci. USA 104, 11245–11250 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evilevitch, A. et al. Effects of salts on internal DNA pressure and mechanical properties of phage capsids. J. Mol. Biol. 405, 18–23 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huber, R. G., Marzinek, J. K., Holdbrook, D. A. & Bond, P. J. Multiscale molecular dynamics simulation approaches to the structure and dynamics of viruses. Prog. Biophys. Mol. Biol. 128, 121–132 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Casalino, L. et al. AI-driven multiscale simulations illuminate mechanisms of SARS-CoV-2 spike dynamics. Int. J. High Perform. Comput. Appl. 35, 432–451 (2021).

    Article 
    PubMed Central 

    Google Scholar
     

  • Yu, A. et al. Strain and rupture of HIV-1 capsids during uncoating. Proc. Natl Acad. Sci. USA 119, e2117781119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cerritelli, M. E. et al. Encapsidated conformation of bacteriophage T7 DNA. Cell 91, 271–280 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Forrey, C. & Muthukumar, M. Langevin dynamics simulations of genome packing in bacteriophage. Biophys. J. 91, 25–41 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Locker, C. R., Fuller, S. D. & Harvey, S. C. DNA organization and thermodynamics during viral packing. Biophys. J. 93, 2861–2869 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petrov, A. S., Boz, M. B. & Harvey, S. C. The conformation of double-stranded DNA inside bacteriophages depends on capsid size and shape. J. Struct. Biol. 160, 241–248 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marenduzzo, D. et al. DNA–DNA interactions in bacteriophage capsids are responsible for the observed DNA knotting. Proc. Natl Acad. Sci. USA 106, 22269–22274 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dans, P. D. et al. The static and dynamic structural heterogeneities of B-DNA: extending Calladine–Dickerson rules. Nucleic Acids Res. 47, 11090–11102 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liebl K. & Zacharias M. The development of nucleic acids force fields: From an unchallenged past to a competitive future. Biophys. J. https://doi.org/10.1016/j.bpj.2022.12.022 (2023).

  • Yoo, J., Winogradoff, D. & Aksimentiev, A. Molecular dynamics simulations of DNA–DNA and DNA–protein interactions. Curr. Opin. Struct. Biol. 64, 88–96 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lynch D. L., Pavlova A., Fan Z. & Gumbart J. C. Understanding virus structure and dynamics through molecular simulations. J. Chem. Theory Comput. https://doi.org/10.1021/acs.jctc.3c00116 (2023).

  • Perilla, J. R. & Schulten, K. Physical properties of the HIV-1 capsid from all-atom molecular dynamics simulations. Nat. Commun. 8, 15959 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hadden, J. A. et al. All-atom molecular dynamics of the HBV capsid reveals insights into biological function and cryo-EM resolution limits. eLife 7, e32478 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Durrant, J. D. et al. Mesoscale all-atom Influenza virus simulations suggest new substrate binding mechanism. ACS Cent. Sci. 6, 189–196 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bryer, A. J., Reddy, T., Lyman, E. & Perilla, J. R. Full scale structural, mechanical and dynamical properties of HIV-1 liposomes. PLoS Comput. Biol. 18, e1009781 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Freddolino, P. L., Arkhipov, A. S., Larson, S. B., McPherson, A. & Schulten, K. Molecular dynamics simulations of the complete satellite tobacco mosaic virus. Structure 14, 437–449 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gan, L. et al. Capsid conformational sampling in HK97 maturation visualized by X-ray crystallography and cryo-EM. Structure 14, 1655–1665 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • May, E. R., Arora, K. & Brooks, C. L. III pH-induced stability switching of the bacteriophage HK97 maturation pathway. J. Am. Chem. Soc. 136, 3097–3107 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jana, A. K., Sharawy, M. & May, E. R. Non-equilibrium virus particle dynamics: microsecond MD simulations of the complete flock house virus capsid under different conditions. J. Struct. Biol. 215, 107964 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andoh, Y. et al. All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution. J. Chem. Phys. 141, 165101 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, S. et al. A viral packaging motor varies its DNA rotation and step size to preserve subunit coordination as the capsid fills. Cell 157, 702–713 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grayson, P., Han, L., Winther, T. & Phillips, R. Real-time observations of single bacteriophage lambda DNA ejections in vitro. Proc. Natl Acad. Sci. USA 104, 14652 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arsuaga, J., Tan, R. K.-Z., Vazquez, M., Sumners, D. W. & Harvey, S. C. Investigation of viral DNA packaging using molecular mechanics models. Biophys. Chem. 101-102, 475–484 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berndsen, Z. T., Keller, N., Grimes, S., Jardine, P. J. & Smith, D. E. Nonequilibrium dynamics and ultraslow relaxation of confined DNA during viral packaging. Proc. Natl Acad. Sci. USA 111, 8345–8350 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vroege, G. J. & Odijk, T. Induced chain rigidity, splay modulus and other properties of nematic polymer liquid crystals. Macromolecules 21, 2848–2858 (1988).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Leforestier, A. & Livolant, F. The bacteriophage genome undergoes a succession of intracapsid phase transitions upon DNA ejection. J. Mol. Biol. 396, 384–395 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoo, J. & Aksimentiev, A. The structure and intermolecular forces of DNA condensates. Nucleic Acids Res. 44, 2036–2046 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Córdoba, A., Hinckley, D. M., Lequieu, J. & de Pablo, J. J. A molecular view of the dynamics of dsDNA packing inside viral capsids in the presence of ions. Biophys. J. 112, 1302–1315 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Widom, J. & Baldwin, R. L. Tests of spool models for DNA packaging in phage lambda. J. Mol. Biol. 171, 419–437 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bauer, D. W. et al. Exploring the balance between DNA pressure and capsid stability in herpes and phage. J. Virol. 89, 9288–9298 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu, X. et al. Salt-dependent DNA–DNA spacings in intact bacteriophage λ reflect relative importance of DNA self-repulsion and bending energies. Phys. Rev. Lett. 106, 028102 (2011).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dixit, A., Ray, K., Lakowicz, J. R. & Black, L. W. Dynamics of the T4 bacteriophage DNA packasome motor. J. Biol. Chem. 286, 18878–18889 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grayson, P. et al. The effect of genome length on ejection forces in bacteriophage lambda. Virology 348, 430–436 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roos, W., Ivanovska, I., Evilevitch, A. & Wuite, G. Viral capsids: mechanical characteristics, genome packaging and delivery mechanisms. Cell. Mol. Life Sci. 64, 1484–1497 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiaruttini, N. et al. Is the in vitro ejection of bacteriophage DNA quasistatic? A bulk to single virus study. Biophys. J. 99, 447–455 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, X. J. & Olson, W. K. 3DNA: a versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures. Nat. Protoc. 3, 1213–1227 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phillips, J. C. et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 153, 044130 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yoo, J. & Aksimentiev, A. Improved parametrization of Li+, Na+, K+, and Mg2+ ions for all-atom molecular dynamics simulations of nucleic acid systems. J. Phys. Chem. Lett. 3, 45–50 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Yoo, J. & Aksimentiev, A. New tricks for old dogs: improving the accuracy of biomolecular force fields by pair-specific corrections to non-bonded interactions. Phys. Chem. Chem. Phys. 20, 8432–8449 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Subirana, J. A. & Soler-Lopez, M. Cations as hydrogen bond donors: a view of electrostatic interactions in DNA. Annu. Rev. Biophys. Biomol. Struct. 32, 27–45 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Batcho, P. F., Case, D. A. & Schlick, T. Optimized particle-mesh Ewald/multiple-time step integration for molecular dynamics simulations. J. Chem. Phys. 115, 4003–4018 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Darden, T. A., York, D. & Pedersen, L. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–92 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Miyamoto, S. & Kollman, P. A. SETTLE: an analytical version of the SHAKE and RATTLE algorithm for rigid water molecules. J. Comput. Chem. 13, 952–962 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Andersen, H. C. RATTLE: A “velocity” version of the SHAKE algorithm for molecular dynamics calculations. J. Comput. Phys. 52, 24–34 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Martyna, G. J., Tobias, D.J. & Klein, M.L. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 101, 4177–4189 (1994).

  • Wells, D. B., Abramkina, V. & Aksimentiev, A. Exploring transmembrane transport through α-hemolysin with grid-steered molecular dynamics. J. Chem. Phys. 127, 125101 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A. & Joannopoulos, J. D. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045–1097 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graphics 14, 33–38 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Michaud-Agrawal, N., Denning, E. J., Woolf, T. B. & Beckstein, O. MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 32, 2319–2327 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Helgstrand, C. et al. The refined structure of a protein catenane: the HK97 bacteriophage capsid at 3.44 Å resolution. J. Mol. Biol. 334, 885–899 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vanommeslaeghe, K. & MacKerell, A. D. Jr. Automation of the CHARMM general force field (CGenFF) ii: bond perception and atom typing. J. Chem. Inf. Model. 52, 3155–3168 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maffeo, C. & Aksimentiev, A. MrDNA: a multi-resolution model for predicting the structure and dynamics of DNA systems. Nucleic Acids Res. 48, 5135–5146 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Comer, J. & Aksimentiev, A. Predicting the DNA sequence dependence of nanopore ion current using atomic-resolution Brownian dynamics. J. Phys. Chem. C 116, 3376–3393 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Zwanzig, R. Diffusion in a rough potential. Proc. Natl Acad. Sci. USA 85, 2029–2030 (1988).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Juhala, R. J. et al. Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. J. Mol. Biol. 299, 27–51 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maffeo, C., Yoo, J. & Aksimentiev, A. De novo prediction of DNA origami structures through atomistic molecular dynamics simulation. Nucleic Acids Res. 44, 3013–3019 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bryer, A. J., Hadden-Perilla, J. A., Stone, J. E. & Perilla, J. R. High-performance analysis of biomolecular containers to measure small-molecule transport, transbilayer lipid diffusion, and protein cavities. J. Chem. Inf. Model. 59, 4328–4338 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoo, J. & Aksimentiev, A. Improved parameterization of amine–carboxylate and amine–phosphate interactions for molecular dynamics simulations using the CHARMM and AMBER force fields. J. Chem. Theory Comput. 12, 430–443 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, P., Agrafiotis, D. K. & Theobald, D. L. Fast determination of the optimal rotational matrix for macromolecular superpositions. J. Comput. Chem. 31, 1561–1563 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Svergun, D., Barberato, C. & Koch, M. H. CRYSOL—a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Cryst. 28, 768–773 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lavery, R., Moakher, M., Maddocks, J. H., Petkeviciute, D. & Zakrzewska, K. Conformational analysis of nucleic acids revisited: Curves+. Nucleic Acids Res. 37, 5917–5929 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olson, W. K. et al. A standard reference frame for the description of nucleic acid base-pair geometry. J. Mol. Biol. 313, 229–237 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anderson, C. M., Georgiou, G. N., Morrison, I., Stevenson, G. & Cherry, R. J. Tracking of cell surface receptors by fluorescence digital imaging microscopy using a charge-coupled device camera. Low-density lipoprotein and influenza virus receptor mobility at 4 °C. J. Cell Sci. 101, 415–425 (1992).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, T.-C., Kashyap, R. L. & Chu, C.-N. Building skeleton models via 3-D medial surface axis thinning algorithms. CVGIP Graph. Models Image Process. 56, 462–478 (1994).

    Article 

    Google Scholar
     

  • Coshic K., Maffeo C., Winogradoff D., Aksimentiev A. Select trajectories, simulation setup, and analysis for “The structure and physical properties of a packaged bacteriophage particle”. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-4930709_V1 (2024).

  • Aksimentiev, A. & Schulten, K. Imaging α-hemolysin with molecular dynamics: Ionic conductance, osmotic permeability and the electrostatic potential map. Biophys. J. 88, 3745–3761 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • [ad_2]

    Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Related Posts