Van der Waals polarity-engineered 3D integration of 2D complementary logic

  • Kang, J.-H. et al. Monolithic 3D integration of 2D materials-based electronics towards ultimate edge computing solutions. Nat. Mater. 22, 1470–1477 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, K. S. et al. Seamless monolithic three-dimensional integration of single-crystalline films by growth. Preprint at https://doi.org/10.48550/arXiv.2312.03206 (2023).

  • Jayachandran, D. et al. Three-dimensional integration of two-dimensional field-effect transistors. Nature 625, 276–281 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tong, L. et al. Heterogeneous complementary field-effect transistors based on silicon and molybdenum disulfide. Nat. Electron. 6, 37–44 (2023).

    CAS 

    Google Scholar
     

  • Guan, S.-X. et al. Monolithic 3D integration of back-end compatible 2D material FET on si FinFET. npj 2D Mater. Appl. 7, 9 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Xiong, X. et al. Demonstration of vertically stacked CVD monolayer channels: MoS2 nanosheets GAA-FET with Ion> 700 μA/μm and MoS2/WSe2 CFET. In 2021 IEEE International Electron Devices Meeting (IEDM) 7.5.1–7.5.4 (IEEE, 2021).

  • Xia, Y. et al. Wafer-scale demonstration of MBC-FET and C-FET arrays based on two-dimensional semiconductors. Small 18, 2107650 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ran, Y. et al. Large-scale vertically interconnected complementary field-effect transistors based on thermal evaporation. Small https://doi.org/10.1002/smll.202309953 (2023).

  • Kim, J.-K. et al. Molecular dopant-dependent charge transport in surface-charge-transfer-doped tungsten diselenide field effect transistors. Adv. Mater. 33, 2101598 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ji, H. G. et al. Chemically tuned p-and n-type WSe2 monolayers with high carrier mobility for advanced electronics. Adv. Mater. 31, 1903613 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. P-type electrical contacts for 2D transition-metal dichalcogenides. Nature 610, 61–66 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kong, L. et al. Doping-free complementary WSe2 circuit via van der Waals metal integration. Nat. Commun. 11, 1866 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, C. et al. Carrier type control of WSe2 field-effect transistors by thickness modulation and MoO3 layer doping. Adv, Funct. Mater. 26, 4223–4230 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, P. et al. Air stable p-doping of WSe2 by covalent functionalization. ACS Nano 8, 10808–10814 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pang, C.-S. et al. Atomically controlled tunable doping in high-performance WSe2 devices. Adv. Electron. Mater. 6, 1901304 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yamamoto, M., Nakaharai, S., Ueno, K. & Tsukagoshi, K. Self-limiting oxides on WSe2 as controlled surface acceptors and low-resistance hole contacts. Nano Lett. 16, 2720–2727 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lan, H. Y., Tripathi, R., Liu, X., Appenzeller, J. & Chen, Z. Wafer-scale CVD monolayer WSe2 p-FETs with record-high 727 μA/μm Ion and 490 μS/μm gmax via hybrid charge transfer and molecular doping. In International Electron Devices Meeting (IEDM) 1–4 (IEEE, 2023).

  • Nipane, A., Karmakar, D., Kaushik, N., Karande, S. & Lodha, S. Few-layer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantation. ACS Nano 10, 2128–2137 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X. et al. P-type polar transition of chemically doped multilayer MoS2 transistor. Adv. Mater. 28, 2345–2351 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, S., Le, S. T., Richter, C. A. & Hacker, C. A. Improved contacts to p-type MoS2 transistors by charge-transfer doping and contact engineering. Appl. Phys. Lett. 115, 073106 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Wu, S. et al. High-performance p-type MoS2 field-effect transistor by toroidal-magnetic-field controlled oxygen plasma doping. 2D Mater. 6, 025007 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Momose, T., Nakamura, A., Daniel, M. & Shimomura, M. Phosphorous doped p-type MoS2 polycrystalline thin films via direct sulfurization of Mo film. AIP Adv. 8, 025009 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Das, S., Demarteau, M. & Roelofs, A. Nb-doped single crystalline MoS2 field effect transistor. Appl. Phys. Lett. 106, 173506 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Choudhary, N., Park, J., Hwang, J. Y. & Choi, W. Growth of large-scale and thickness-modulated MoS2 nanosheets. ACS Appl. Mater. Inter. 6, 21215–21222 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y., Ye, J., Matsuhashi, Y. & Iwasa, Y. Ambipolar MoS2 thin flake transistors. Nano Lett. 12, 1136–1140 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng, Y. et al. Low-damaged p-type doping of MoS2 using direct nitrogen plasma modulated by toroidal-magnetic-field. Nanotechnology 31, 015702 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Oh, G. H., Kim, S.-i & Kim, T. High-performance Te-doped p-type MoS2 transistor with high-k insulators. J. Alloys Compd. 860, 157901 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wei, J. et al. Wafer-scale MoS2 for p-type field effect transistor arrays and defects-related electrical characteristics. Thin Solid Films 732, 138798 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Waldrop, M. M. The chips are down for Moore’s law. Nature 530, 144–147 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, S. et al. Two-dimensional devices and integration towards the silicon lines. Nat. Mater. 21, 1225–1239 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ku, B. W., Chang, K. & Lim, S. K. Compact-2D a physical design methodology to build two-tier gate-level 3-D ICs. IEEE T. on Comput. Aid. D. 39, 1151–1164 (2020).

    Article 

    Google Scholar
     

  • Fisher, D. W. et al. Face to face hybrid wafer bonding for fine pitch applications. In 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), 595–600 (IEEE, 2020).

  • Lee, G. H., Hwang, S., Yu, J. & Kim, H. Architecture and process integration overview of 3D NAND flash technologies. Appl. Sci. 11, 6703 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Das, S. et al. Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 4, 786–799 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sivan, M. et al. All WSe2 1T1R resistive RAM cell for future monolithic 3D embedded memory integration. Nat. Commun. 10, 5201 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, J. et al. Vertical integration of 2D building blocks for all-2D electronics. Adv. Electron. Mater. 6, 2000550 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, J., Parto, K., Cao, W. & Banerjee, K. Ultimate monolithic-3D integration with 2D materials: rationale, prospects, and challenges. IEEE J. Electron Devi. 7, 878–887 (2019).

    Article 

    Google Scholar
     

  • Li, W. et al. Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 613, 274–279 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, P.-C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Quantum Hall phase in graphene engineered by interfacial charge coupling. Nat. Nanotechnol. 17, 1272–1279 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, X. et al. Synergistic correlated states and nontrivial topology in coupled graphene-insulator heterostructures. Nat. Commun. 14, 5550 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Novoselov, K. S., Mishchenko, A., Carvalho, oA. & Castro Neto, A. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiu, H. et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 4, 2642 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gong, C., Colombo, L., Wallace, R. M. & Cho, K. The unusual mechanism of partial fermi level pinning at metal-MoS2 interfaces. Nano Lett. 14, 1714–1720 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cong, X., Liu, X.-L., Lin, M.-L. & Tan, P.-H. Application of Raman spectroscopy to probe fundamental properties of two-dimensional materials. npj 2D Mater. Appl. 4, 13 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Iqbal, M. W., Shahzad, K., Akbar, R. & Hussain, G. A review on Raman finger prints of doping and strain effect in TMDCs. Microelectron. Eng. 219, 111152 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. & Ang, K.-W. Monolithically integrated flexible black phosphorus complementary inverter circuits. ACS Nano 11, 7416–7423 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sachid, A. B. et al. Monolithic 3D CMOS using layered semiconductors. Adv. Mater. 28, 2547–2554 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liechtenstein, A. I., Anisimov, V. I. & Zaanen, J. Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 52, R5467–R5470 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bučko, T., Hafner, J., Lebégue, S. & Ángyán, J. G. Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals corrections. J. Phys. Chem. A 114, 11814–24 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, S. et al. Anti-ambipolar and polarization-resolved behavior in MoTe2 channel sensitized with low-symmetric CrOCl. Appl. Phys. Lett. 122, 083503 (2023).

  • Lu, C.-P. et al. Bandgap, mid-gap states, and gating effects in MoS2. Nano Lett. 14, 4628–4633 (2014).

  • Guo, Y. et al. Van der Waals polarity-engineered 3D integration of 2D complementary logic. Zenodo https://doi.org/10.5281/zenodo.10262243 (2024).


  • Source link

    Total
    0
    Shares
    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Related Posts