Venus water loss is dominated by HCO+ dissociative recombination

  • Izidoro, A. et al. Planetesimal rings as the cause of the Solar System’s planetary architecture. Nat. Astron. 6, 357–366 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Salvador, A. et al. Magma ocean, water, and the early atmosphere of Venus. Space Sci. Rev. 219, 51 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Moroz, V. I. et al. Spectrum of the Venus day sky. Nature 284, 243–244 (1980).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Marcq, E., Mills, F. P., Parkinson, C. D. & Vandaele, A. C. Composition and chemistry of the neutral atmosphere of Venus. Space Sci. Rev. 214, 10 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Kasting, J. F. & Pollack, J. B. Loss of water from Venus. I. Hydrodynamic escape of hydrogen. Icarus 53, 479–508 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Turbet, M. et al. Day–night cloud asymmetry prevents early oceans on Venus but not on Earth. Nature 598, 276–280 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnstone, C. P. Hydrodynamic escape of water vapor atmospheres near very active stars. Astrophys. J. 890, 79 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Donahue, T. M., Hoffman, J. H., Hodges, R. R. & Watson, A. J. Venus was wet: a measurement of the ratio of deuterium to hydrogen. Science 216, 630–633 (1982).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • De Bergh, C. et al. Deuterium on Venus: observations from Earth. Science 251, 547–549 (1991).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kumar, S., Hunten, D. M. & Pollack, J. B. Nonthermal escape of hydrogen and deuterium from Venus and implications for loss of water. Icarus 55, 369–389 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Donahue, T. M. New analysis of hydrogen and deuterium escape from Venus. Icarus 141, 226–235 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stewart, A. I. F. in Second Arizona Conference on Planetary Atmospheres (1968).

  • Hodges, R. R. An exospheric perspective of isotopic fractionation of hydrogen on Venus. J. Geophys. Res. Planets 104, 8463–8471 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chaufray, J.-Y., Bertaux, J.-L., Quémerais, E., Villard, E. & Leblanc, F. Hydrogen density in the dayside Venusian exosphere derived from Lyman-α observations by SPICAV on Venus Express. Icarus 217, 767–778 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • McElroy, M. B., Prather, M. J. & Rodriguez, J. M. Escape of hydrogen from Venus. Science 215, 1614–1615 (1982).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu, H., Cui, J., Niu, D. & Yu, J. Hydrogen and helium escape on Venus via energy transfer from hot oxygen atoms. Mon. Not. R. Astron. Soc. 501, 2394–2402 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hartle, R. E. & Grebowsky, J. M. Light ion flow in the nightside ionosphere of Venus. J. Geophys. Res. Planets 98, 7437–7445 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Persson, M. et al. H+/O+ escape rate ratio in the Venus magnetotail and its dependence on the solar cycle. Geophys. Res. Lett. 45, 10805–10811 (2018).

  • Lammer, H. et al. Loss of hydrogen and oxygen from the upper atmosphere of Venus. Planet. Space Sci. 54, 1445–1456 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gillmann, C. et al. The long-term evolution of the atmosphere of Venus: processes and feedback mechanisms. Space Sci. Rev. 218, 56 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Grinspoon, D. H. Implications of the high D/H ratio for the sources of water in Venus’ atmosphere. Nature 363, 428–431 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Avice, G. et al. Noble gases and stable isotopes track the origin and early evolution of the Venus atmosphere. Space Sci. Rev. 218, 60 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Way, M. J. & Del Genio, A. D. Venusian habitable climate scenarios: modeling Venus through time and applications to slowly rotating Venus-like exoplanets. J. Geophys. Res. Planets 125, e06276 (2020).

    Article 

    Google Scholar
     

  • Chaffin, M. S., Deighan, J., Schneider, N. M. & Stewart, A. I. F. Elevated atmospheric escape of atomic hydrogen from Mars induced by high-altitude water. Nat. Geosci. 10, 174–178 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cangi, E. M., Chaffin, M. S. & Deighan, J. Higher Martian atmospheric temperatures at all altitudes increase the D/H fractionation factor and water loss. J. Geophys. Res. Planets 125, e06626 (2020).

    Article 

    Google Scholar
     

  • Cangi, E., Chaffin, M., Yelle, R., Gregory, B. & Deighan, J. Fully coupled photochemistry of the deuterated ionosphere of Mars and its effects on escape of H and D. J. Geophys. Res. Planets 128, e2022JE007713 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yung, Y. L. & Demore, W. B. Photochemistry of the stratosphere of Venus: implications for atmospheric evolution. Icarus 51, 199–247 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fox, J. L. & Sung, K. Y. Solar activity variations of the Venus thermosphere/ionosphere. J. Geophys. Res. Space Phys. 106, 21305–21335 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Krasnopolsky, V. A. A photochemical model for the Venus atmosphere at 47–112 km. Icarus 218, 230–246 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fedorova, A. et al. HDO and H2O vertical distributions and isotopic ratio in the Venus mesosphere by Solar Occultation at Infrared spectrometer on board Venus Express. J. Geophys. Res. Planets 113, E00B22 (2008).

    Article 

    Google Scholar
     

  • Paxton, L. J., Anderson Jr, D. E. & Stewart, A. I. F. Analysis of Pioneer Venus Orbiter ultraviolet spectrometer Lyman α data from near the subsolar region. J. Geophys. Res. Space Phys. 93, 1766–1772 (1988).

    Article 
    ADS 

    Google Scholar
     

  • Fox, J. L. The post-terminator ionosphere of Venus. Icarus 216, 625–639 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Brinton, H. C. et al. Venus nighttime hydrogen bulge. Geophys. Res. Lett. 7, 865–868 (1980).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Martinez, A. et al. Exploring the variability of the Venusian thermosphere with the IPSL Venus GCM. Icarus 389, 115272 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Navarro, T. et al. Venus’ upper atmosphere revealed by a GCM: I. Structure and variability of the circulation. Icarus 366, 114400 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Fox, J. L. The chemistry of protonated species in the Martian ionosphere. Icarus 252, 366–392 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Taylor, H. A., Brinton, H. C., Wagner, T. C. G., Blackwell, B. H. & Cordier, G. R. Bennett ion mass spectrometers on the Pioneer Venus Bus and Orbiter. IEEE Tran. Geosci. Remote Sens. 18, 44–49 (1980).

    Article 
    ADS 

    Google Scholar
     

  • Miller, K. L., Knudsen, W. C. & Spenner, K. The dayside Venus ionosphere: I. Pioneer-Venus retarding potential analyzer experimental observations. Icarus 57, 386–409 (1984).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Barabash, S. et al. The Analyser of Space Plasmas and Energetic Atoms (ASPERA-4) for the Venus Express mission. Planet. Space Sci. 55, 1772–1792 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bertaux, J. L. & Clarke, J. T. Deuterium content of the Venus atmosphere. Nature 338, 567–568 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Donahue, T. M. Deuterium on Venus. Nature 340, 513–514 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Liang, M.-C. & Yung, Y. L. Modeling the distribution of H2O and HDO in the upper atmosphere of Venus. J. Geophys. Res. Planets 114, E00B28 (2009).

    Article 

    Google Scholar
     

  • Parkinson, C. D. et al. Photochemical control of the distribution of Venusian water. Planet. Space Sci. 113, 226–236 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Widemann, T. et al. Venus evolution through time: key science questions, selected mission concepts and future investigations. Space Sci. Rev. 219, 56 (2023).

    Article 
    ADS 

    Google Scholar
     

  • McClintock, W. E. et al. The Imaging Ultraviolet Spectrograph (IUVS) for the MAVEN Mission. Space Sci. Rev. 195, 75–124 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Bertaux, J. L., Goutail, F., Dimarellis, E., Kockarts, G. & van Ransbeeck, E. First optical detection of atomic deuterium in the upper atmosphere from Spacelab 1. Nature 309, 771–773 (1984).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gregory, B. S., Elliott, R. D., Deighan, J., Gröller, H. & Chaffin, M. S. HCO+ dissociative recombination: a significant driver of nonthermal hydrogen loss at Mars. J. Geophys. Res. Planets 128, e2022JE007576 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Barth, C. A., Pearce, J. B., Kelly, K. K., Wallace, L. & Fastie, W. G. Ultraviolet emissions observed near Venus from Mariner V. Science 158, 1675–1678 (1967).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Anderson, D. E. The Mariner 5 ultraviolet photometer experiment: analysis of hydrogen Lyman alpha data. J. Geophys. Res. 81, 1213–1216 (1976).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Takacs, P., Broadfoot, A., Smith, G. & Kumar, S. Mariner 10 observations of hydrogen Lyman alpha emission from the Venus exosphere: evidence of complex structure. Planet. Space Sci. 28, 687–701 (1980).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • von Zahn, U., Kumar, S., Niemann, H. & Prinn, R. in Venus (eds Hunten D. M., Colin, L., Donahue, T. M. & Moroz, V. I.) 299–430 (Univ. Arizona Press, 1983).

  • Hunten, D. M. The escape of light gases from planetary atmospheres. J. Atmos. Sci. 30, 1481–1494 (1973).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Krissansen-Totton, J., Fortney, J. J. & Nimmo, F. Was Venus ever habitable? Constraints from a coupled interior–atmosphere–redox evolution model. Planet. Sci. J. 2, 216 (2021).

    Article 

    Google Scholar
     

  • Warren, A. O. & Kite, E. S. Narrow range of early habitable Venus scenarios permitted by modeling of oxygen loss and radiogenic argon degassing. Proc. Natl Acad. Sci. 120, e2209751120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chassefière, E. Hydrodynamic escape of hydrogen from a hot water-rich atmosphere: the case of Venus. J. Geophys. Res. 101, 26039–26056 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Chassefière, E. Loss of water on the young Venus: the effect of a strong primitive solar wind. Icarus 126, 229–232 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Way, M. J. et al. Was Venus the first habitable world of our solar system? Geophys. Res. Lett. 43, 8376–8383 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gillmann, C. et al. Dry late accretion inferred from Venus’s coupled atmosphere and internal evolution. Nat. Geosci. 13, 265–269 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Selsis, F., Leconte, J., Turbet, M., Chaverot, G. & Bolmont, É. A cool runaway greenhouse without surface magma ocean. Nature 620, 287–291 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fox, J. L. & Bougher, S. W. Structure, luminosity, and dynamics of the Venus thermosphere. Space Sci. Rev. 55, 357–489 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Hodges Jr, R. R. Collision cross sections and diffusion parameters for H and D in atomic oxygen. J. Geophys. Res. 98, 3799–3805 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Shizgal, B. D. Escape of H and D from Mars and Venus by energization with hot oxygen. J. Geophys. Res. 104, 14833–14846 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yang, J., Boué, G., Fabrycky, D. C. & Abbot, D. S. Strong dependence of the inner edge of the habitable zone on planetary rotation rate. Astrophys. J. 787, L2 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Herrick, R. R. & Hensley, S. Surface changes observed on a Venusian volcano during the Magellan mission. Science 379, 1205–1208 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rolf, T. et al. Dynamics and evolution of Venus’ mantle through time. Space Sci. Rev. 218, 70 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Hedin, A. E., Niemann, H. B., Kasprzak, W. T. & Seiff, A. Global empirical model of the Venus thermosphere. J. Geophys. Res. 88, 73–84 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bertaux, J.-L. et al. SPICAV on Venus Express: three spectrometers to study the global structure and composition of the Venus atmosphere. Planet. Space Sci. 55, 1673–1700 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hagemann, R., Nief, G. & Roth, E. Absolute isotopic scale for deuterium analysis of natural waters. Absolute D/H ratio for SMOW. Tellus 22, 712–715 (1970).

    ADS 
    CAS 

    Google Scholar
     

  • Lillis, R. et al. Photochemical escape of oxygen from Mars: first results from MAVEN in situ data. J. Geophys. Res. Space Phys. 122, 3815–3836 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rosati, R. E., Skrzypkowski, M. P., Johnsen, R. & Golde, M. F. Yield of excited CO molecules from dissociative recombination of HCO+ and HOC+ ions with electrons. J. Chem. Phys. 126, 154302–154302 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Miller, K. L., Knudsen, C. W., Spenner, K., Whitten, R. C. & Novak, V. Solar zenith angle dependence of ionospheric ion and electron temperatures and density on Venus. J. Geophys. Res. Space Phys. 85, 7759–7764 (1980).

    Article 
    ADS 

    Google Scholar
     

  • Brace, L. H. et al. The dynamic behavior of the Venus ionosphere in response to solar wind interactions. J. Geophys. Res. 85, 7663–7678 (1980).

    Article 
    ADS 

    Google Scholar
     

  • Kasprzak, W. T. et al. in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment (eds Bougher, S. W. et al.) 225–258 (Univ. Arizona Press, 1997).

  • Niemann, H. B., Kasprzak, W. T., Hedin, A. E., Hunten, D. M. & Spencer, N. W. Mass spectrometric measurements of the neutral gas composition of the thermosphere and exosphere of Venus. J. Geophys. Res. Space Res. 85, 7817–7827 (1980).

    Article 
    ADS 

    Google Scholar
     

  • Fox, J. L. & Kliore, A. J. in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment (eds Bougher, S. W. et al.) 161–188 (Univ. Arizona Press, 1997).

  • Grebowsky, J. M., Kasprzak, W. T., Hartle, R. E. & Donahue, T. M. A new look at Venus’ thermosphere H distribution. Adv. Space Res. 17, 191–195 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Donahue, T. M., Grinspoon, D. H., Hartle, R. E. & Hodges, R. R. Jr. in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment (eds Bougher, S. W. et al.) 385–414 (Univ. Arizona Press, 1997).

  • Stolzenbach, A., Lefèvre, F., Lebonnois, S. & Määttänen, A. Three-dimensional modeling of Venus photochemistry and clouds. Icarus 395, 115447 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Dickinson, R. E. & Ridley, E. C. Venus mesosphere and thermosphere temperature structure: II. Day-night variations. Icarus 30, 163–178 (1977).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Seiff, A. Dynamical implications of the observed thermal contrasts in Venus’ upper atmosphere. Icarus 51, 574–592 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Garvin, J. B. et al. Revealing the mysteries of Venus: the DAVINCI mission. Planet. Sci. J. 3, 117 (2022).

    Article 

    Google Scholar
     

  • Smrekar, S. E. et al. VERITAS (Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy): a selected discovery mission in 53rd Lunar and Planetary Science Conference. LPI contribution no. 2678, id. 1122 (2022).

  • Helbert, J. et al. The VenSpec suite on the ESA Envision mission – a holistic investigation of the coupled surface atmosphere system of Venus in 16th Europlanet Science Congress, id. EPSC2022-374 (2022).


  • Source link

    Total
    0
    Shares
    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Related Posts