Izidoro, A. et al. Planetesimal rings as the cause of the Solar System’s planetary architecture. Nat. Astron. 6, 357–366 (2022).
Salvador, A. et al. Magma ocean, water, and the early atmosphere of Venus. Space Sci. Rev. 219, 51 (2023).
Moroz, V. I. et al. Spectrum of the Venus day sky. Nature 284, 243–244 (1980).
Marcq, E., Mills, F. P., Parkinson, C. D. & Vandaele, A. C. Composition and chemistry of the neutral atmosphere of Venus. Space Sci. Rev. 214, 10 (2018).
Kasting, J. F. & Pollack, J. B. Loss of water from Venus. I. Hydrodynamic escape of hydrogen. Icarus 53, 479–508 (1983).
Turbet, M. et al. Day–night cloud asymmetry prevents early oceans on Venus but not on Earth. Nature 598, 276–280 (2021).
Johnstone, C. P. Hydrodynamic escape of water vapor atmospheres near very active stars. Astrophys. J. 890, 79 (2020).
Donahue, T. M., Hoffman, J. H., Hodges, R. R. & Watson, A. J. Venus was wet: a measurement of the ratio of deuterium to hydrogen. Science 216, 630–633 (1982).
De Bergh, C. et al. Deuterium on Venus: observations from Earth. Science 251, 547–549 (1991).
Kumar, S., Hunten, D. M. & Pollack, J. B. Nonthermal escape of hydrogen and deuterium from Venus and implications for loss of water. Icarus 55, 369–389 (1983).
Donahue, T. M. New analysis of hydrogen and deuterium escape from Venus. Icarus 141, 226–235 (1999).
Stewart, A. I. F. in Second Arizona Conference on Planetary Atmospheres (1968).
Hodges, R. R. An exospheric perspective of isotopic fractionation of hydrogen on Venus. J. Geophys. Res. Planets 104, 8463–8471 (1999).
Chaufray, J.-Y., Bertaux, J.-L., Quémerais, E., Villard, E. & Leblanc, F. Hydrogen density in the dayside Venusian exosphere derived from Lyman-α observations by SPICAV on Venus Express. Icarus 217, 767–778 (2012).
McElroy, M. B., Prather, M. J. & Rodriguez, J. M. Escape of hydrogen from Venus. Science 215, 1614–1615 (1982).
Gu, H., Cui, J., Niu, D. & Yu, J. Hydrogen and helium escape on Venus via energy transfer from hot oxygen atoms. Mon. Not. R. Astron. Soc. 501, 2394–2402 (2021).
Hartle, R. E. & Grebowsky, J. M. Light ion flow in the nightside ionosphere of Venus. J. Geophys. Res. Planets 98, 7437–7445 (1993).
Persson, M. et al. H+/O+ escape rate ratio in the Venus magnetotail and its dependence on the solar cycle. Geophys. Res. Lett. 45, 10805–10811 (2018).
Lammer, H. et al. Loss of hydrogen and oxygen from the upper atmosphere of Venus. Planet. Space Sci. 54, 1445–1456 (2006).
Gillmann, C. et al. The long-term evolution of the atmosphere of Venus: processes and feedback mechanisms. Space Sci. Rev. 218, 56 (2022).
Grinspoon, D. H. Implications of the high D/H ratio for the sources of water in Venus’ atmosphere. Nature 363, 428–431 (1993).
Avice, G. et al. Noble gases and stable isotopes track the origin and early evolution of the Venus atmosphere. Space Sci. Rev. 218, 60 (2022).
Way, M. J. & Del Genio, A. D. Venusian habitable climate scenarios: modeling Venus through time and applications to slowly rotating Venus-like exoplanets. J. Geophys. Res. Planets 125, e06276 (2020).
Chaffin, M. S., Deighan, J., Schneider, N. M. & Stewart, A. I. F. Elevated atmospheric escape of atomic hydrogen from Mars induced by high-altitude water. Nat. Geosci. 10, 174–178 (2017).
Cangi, E. M., Chaffin, M. S. & Deighan, J. Higher Martian atmospheric temperatures at all altitudes increase the D/H fractionation factor and water loss. J. Geophys. Res. Planets 125, e06626 (2020).
Cangi, E., Chaffin, M., Yelle, R., Gregory, B. & Deighan, J. Fully coupled photochemistry of the deuterated ionosphere of Mars and its effects on escape of H and D. J. Geophys. Res. Planets 128, e2022JE007713 (2023).
Yung, Y. L. & Demore, W. B. Photochemistry of the stratosphere of Venus: implications for atmospheric evolution. Icarus 51, 199–247 (1982).
Fox, J. L. & Sung, K. Y. Solar activity variations of the Venus thermosphere/ionosphere. J. Geophys. Res. Space Phys. 106, 21305–21335 (2001).
Krasnopolsky, V. A. A photochemical model for the Venus atmosphere at 47–112 km. Icarus 218, 230–246 (2012).
Fedorova, A. et al. HDO and H2O vertical distributions and isotopic ratio in the Venus mesosphere by Solar Occultation at Infrared spectrometer on board Venus Express. J. Geophys. Res. Planets 113, E00B22 (2008).
Paxton, L. J., Anderson Jr, D. E. & Stewart, A. I. F. Analysis of Pioneer Venus Orbiter ultraviolet spectrometer Lyman α data from near the subsolar region. J. Geophys. Res. Space Phys. 93, 1766–1772 (1988).
Fox, J. L. The post-terminator ionosphere of Venus. Icarus 216, 625–639 (2011).
Brinton, H. C. et al. Venus nighttime hydrogen bulge. Geophys. Res. Lett. 7, 865–868 (1980).
Martinez, A. et al. Exploring the variability of the Venusian thermosphere with the IPSL Venus GCM. Icarus 389, 115272 (2023).
Navarro, T. et al. Venus’ upper atmosphere revealed by a GCM: I. Structure and variability of the circulation. Icarus 366, 114400 (2021).
Fox, J. L. The chemistry of protonated species in the Martian ionosphere. Icarus 252, 366–392 (2015).
Taylor, H. A., Brinton, H. C., Wagner, T. C. G., Blackwell, B. H. & Cordier, G. R. Bennett ion mass spectrometers on the Pioneer Venus Bus and Orbiter. IEEE Tran. Geosci. Remote Sens. 18, 44–49 (1980).
Miller, K. L., Knudsen, W. C. & Spenner, K. The dayside Venus ionosphere: I. Pioneer-Venus retarding potential analyzer experimental observations. Icarus 57, 386–409 (1984).
Barabash, S. et al. The Analyser of Space Plasmas and Energetic Atoms (ASPERA-4) for the Venus Express mission. Planet. Space Sci. 55, 1772–1792 (2007).
Bertaux, J. L. & Clarke, J. T. Deuterium content of the Venus atmosphere. Nature 338, 567–568 (1989).
Donahue, T. M. Deuterium on Venus. Nature 340, 513–514 (1989).
Liang, M.-C. & Yung, Y. L. Modeling the distribution of H2O and HDO in the upper atmosphere of Venus. J. Geophys. Res. Planets 114, E00B28 (2009).
Parkinson, C. D. et al. Photochemical control of the distribution of Venusian water. Planet. Space Sci. 113, 226–236 (2015).
Widemann, T. et al. Venus evolution through time: key science questions, selected mission concepts and future investigations. Space Sci. Rev. 219, 56 (2023).
McClintock, W. E. et al. The Imaging Ultraviolet Spectrograph (IUVS) for the MAVEN Mission. Space Sci. Rev. 195, 75–124 (2015).
Bertaux, J. L., Goutail, F., Dimarellis, E., Kockarts, G. & van Ransbeeck, E. First optical detection of atomic deuterium in the upper atmosphere from Spacelab 1. Nature 309, 771–773 (1984).
Gregory, B. S., Elliott, R. D., Deighan, J., Gröller, H. & Chaffin, M. S. HCO+ dissociative recombination: a significant driver of nonthermal hydrogen loss at Mars. J. Geophys. Res. Planets 128, e2022JE007576 (2023).
Barth, C. A., Pearce, J. B., Kelly, K. K., Wallace, L. & Fastie, W. G. Ultraviolet emissions observed near Venus from Mariner V. Science 158, 1675–1678 (1967).
Anderson, D. E. The Mariner 5 ultraviolet photometer experiment: analysis of hydrogen Lyman alpha data. J. Geophys. Res. 81, 1213–1216 (1976).
Takacs, P., Broadfoot, A., Smith, G. & Kumar, S. Mariner 10 observations of hydrogen Lyman alpha emission from the Venus exosphere: evidence of complex structure. Planet. Space Sci. 28, 687–701 (1980).
von Zahn, U., Kumar, S., Niemann, H. & Prinn, R. in Venus (eds Hunten D. M., Colin, L., Donahue, T. M. & Moroz, V. I.) 299–430 (Univ. Arizona Press, 1983).
Hunten, D. M. The escape of light gases from planetary atmospheres. J. Atmos. Sci. 30, 1481–1494 (1973).
Krissansen-Totton, J., Fortney, J. J. & Nimmo, F. Was Venus ever habitable? Constraints from a coupled interior–atmosphere–redox evolution model. Planet. Sci. J. 2, 216 (2021).
Warren, A. O. & Kite, E. S. Narrow range of early habitable Venus scenarios permitted by modeling of oxygen loss and radiogenic argon degassing. Proc. Natl Acad. Sci. 120, e2209751120 (2023).
Chassefière, E. Hydrodynamic escape of hydrogen from a hot water-rich atmosphere: the case of Venus. J. Geophys. Res. 101, 26039–26056 (1996).
Chassefière, E. Loss of water on the young Venus: the effect of a strong primitive solar wind. Icarus 126, 229–232 (1997).
Way, M. J. et al. Was Venus the first habitable world of our solar system? Geophys. Res. Lett. 43, 8376–8383 (2016).
Gillmann, C. et al. Dry late accretion inferred from Venus’s coupled atmosphere and internal evolution. Nat. Geosci. 13, 265–269 (2020).
Selsis, F., Leconte, J., Turbet, M., Chaverot, G. & Bolmont, É. A cool runaway greenhouse without surface magma ocean. Nature 620, 287–291 (2023).
Fox, J. L. & Bougher, S. W. Structure, luminosity, and dynamics of the Venus thermosphere. Space Sci. Rev. 55, 357–489 (1991).
Hodges Jr, R. R. Collision cross sections and diffusion parameters for H and D in atomic oxygen. J. Geophys. Res. 98, 3799–3805 (1993).
Shizgal, B. D. Escape of H and D from Mars and Venus by energization with hot oxygen. J. Geophys. Res. 104, 14833–14846 (1999).
Yang, J., Boué, G., Fabrycky, D. C. & Abbot, D. S. Strong dependence of the inner edge of the habitable zone on planetary rotation rate. Astrophys. J. 787, L2 (2014).
Herrick, R. R. & Hensley, S. Surface changes observed on a Venusian volcano during the Magellan mission. Science 379, 1205–1208 (2023).
Rolf, T. et al. Dynamics and evolution of Venus’ mantle through time. Space Sci. Rev. 218, 70 (2022).
Hedin, A. E., Niemann, H. B., Kasprzak, W. T. & Seiff, A. Global empirical model of the Venus thermosphere. J. Geophys. Res. 88, 73–84 (1983).
Bertaux, J.-L. et al. SPICAV on Venus Express: three spectrometers to study the global structure and composition of the Venus atmosphere. Planet. Space Sci. 55, 1673–1700 (2007).
Hagemann, R., Nief, G. & Roth, E. Absolute isotopic scale for deuterium analysis of natural waters. Absolute D/H ratio for SMOW. Tellus 22, 712–715 (1970).
Lillis, R. et al. Photochemical escape of oxygen from Mars: first results from MAVEN in situ data. J. Geophys. Res. Space Phys. 122, 3815–3836 (2017).
Rosati, R. E., Skrzypkowski, M. P., Johnsen, R. & Golde, M. F. Yield of excited CO molecules from dissociative recombination of HCO+ and HOC+ ions with electrons. J. Chem. Phys. 126, 154302–154302 (2007).
Miller, K. L., Knudsen, C. W., Spenner, K., Whitten, R. C. & Novak, V. Solar zenith angle dependence of ionospheric ion and electron temperatures and density on Venus. J. Geophys. Res. Space Phys. 85, 7759–7764 (1980).
Brace, L. H. et al. The dynamic behavior of the Venus ionosphere in response to solar wind interactions. J. Geophys. Res. 85, 7663–7678 (1980).
Kasprzak, W. T. et al. in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment (eds Bougher, S. W. et al.) 225–258 (Univ. Arizona Press, 1997).
Niemann, H. B., Kasprzak, W. T., Hedin, A. E., Hunten, D. M. & Spencer, N. W. Mass spectrometric measurements of the neutral gas composition of the thermosphere and exosphere of Venus. J. Geophys. Res. Space Res. 85, 7817–7827 (1980).
Fox, J. L. & Kliore, A. J. in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment (eds Bougher, S. W. et al.) 161–188 (Univ. Arizona Press, 1997).
Grebowsky, J. M., Kasprzak, W. T., Hartle, R. E. & Donahue, T. M. A new look at Venus’ thermosphere H distribution. Adv. Space Res. 17, 191–195 (1996).
Donahue, T. M., Grinspoon, D. H., Hartle, R. E. & Hodges, R. R. Jr. in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment (eds Bougher, S. W. et al.) 385–414 (Univ. Arizona Press, 1997).
Stolzenbach, A., Lefèvre, F., Lebonnois, S. & Määttänen, A. Three-dimensional modeling of Venus photochemistry and clouds. Icarus 395, 115447 (2023).
Dickinson, R. E. & Ridley, E. C. Venus mesosphere and thermosphere temperature structure: II. Day-night variations. Icarus 30, 163–178 (1977).
Seiff, A. Dynamical implications of the observed thermal contrasts in Venus’ upper atmosphere. Icarus 51, 574–592 (1982).
Garvin, J. B. et al. Revealing the mysteries of Venus: the DAVINCI mission. Planet. Sci. J. 3, 117 (2022).
Smrekar, S. E. et al. VERITAS (Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy): a selected discovery mission in 53rd Lunar and Planetary Science Conference. LPI contribution no. 2678, id. 1122 (2022).
Helbert, J. et al. The VenSpec suite on the ESA Envision mission – a holistic investigation of the coupled surface atmosphere system of Venus in 16th Europlanet Science Congress, id. EPSC2022-374 (2022).
Source link