Bridging structural and cell biology with cryo-electron microscopy

[ad_1]

  • Berman, H., Henrick, K. & Nakamura, H. Announcing the worldwide Protein Data Bank. Nat. Struct. Biol. 10, 980 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Robinson, C. V., Sali, A. & Baumeister, W. The molecular sociology of the cell. Nature 450, 973–982 (2007). This seminal review coined the termmolecular sociologyand set the scene for future in situ structural biology that combines cryo-ET with proteomics via integrative modelling.

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Span, E. A. et al. Protein structure in context: the molecular landscape of angiogenesis. Biochem. Mol. Biol. Educ. 41, 213–223 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bäuerlein, F. J. B. & Baumeister, W. Towards visual proteomics at high resolution. J. Mol. Biol. 433, 167187 (2021).

    PubMed 

    Google Scholar
     

  • Berger, C. et al. Cryo-electron tomography on focused ion beam lamellae transforms structural cell biology. Nat. Methods 20, 499–511 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Chua, E. Y. D. et al. Better, faster, cheaper: recent advances in cryo-electron microscopy. Annu. Rev. Biochem. 91, 1–32 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, M. & Lander, G. C. Present and emerging methodologies in cryo-EM single-particle analysis. Biophys. J. 119, 1281–1289 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Young, L. N. & Villa, E. Bringing structure to cell biology with cryo-electron tomography. Annu. Rev. Biophys. 52, 573–595 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kühlbrandt, W. The resolution revolution. Science 343, 1443–1444 (2014).

    ADS 
    PubMed 

    Google Scholar
     

  • Lewis, J. S. et al. Mechanism of replication origin melting nucleated by CMG helicase assembly. Nature 606, 1007–1014 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, S. et al. Structural basis of long-range to short-range synaptic transition in NHEJ. Nature 593, 294–298 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X. et al. Structures of +1 nucleosome-bound PIC–Mediator complex. Science 378, 62–68 (2022). This study is an inspiring example of the large size and complexity of reconstitution systems amenable for cryo-EM study. It visualized an assembly of eight transcription complexes, some over 1 MDa in size, on chromatin.

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tholen, J., Razew, M., Weis, F. & Galej, W. P. Structural basis of branch site recognition by the human spliceosome. Science 375, 50–57 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fromm, S. A. et al. The translating bacterial ribosome at 1.55 Å resolution generated by cryo-EM imaging services. Nat. Commun. 14, 1095 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gestaut, D. et al. Structural visualization of the tubulin folding pathway directed by human chaperonin TRiC/CCT. Cell 185, 4770–4787.e20 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bashore, C. et al. Targeted degradation via direct 26S proteasome recruitment. Nat. Chem. Biol. 19, 55–63 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, K., Julius, D. & Cheng, Y. Structural snapshots of TRPV1 reveal mechanism of polymodal functionality. Cell 184, 5138–5150.e12 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kern, D. M. et al. Cryo-EM structure of SARS-CoV-2 ORF3a in lipid nanodiscs. Nat. Struct. Mol. Biol. 28, 573–582 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, X. et al. Cryo-EM structures of orphan GPR21 signaling complexes. Nat. Commun. 14, 216 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Domínguez-Martín, M. A. et al. Structures of a phycobilisome in light-harvesting and photoprotected states. Nature 609, 835–845 (2022).

    ADS 
    PubMed 

    Google Scholar
     

  • Oosterheert, W., Klink, B. U., Belyy, A., Pospich, S. & Raunser, S. Structural basis of actin filament assembly and aging. Nature 611, 374–379 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reynolds, M. J., Hachicho, C., Carl, A. G., Gong, R. & Alushin, G. M. Bending forces and nucleotide state jointly regulate F-actin structure. Nature 611, 380–386 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakane, T. et al. Single-particle cryo-EM at atomic resolution. Nature 587, 152–156 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beck, M. & Baumeister, W. Cryo-electron tomography: can it reveal the molecular sociology of cells in atomic detail? Trends Cell Biol. 26, 825–837 (2016). A landmark review that discusses how recent technological breakthroughs in sample thinning, combined with direct electron detection and phase plates, hold promise to achieve near-atomic reconstructions by in situ cryo-ET.

    PubMed 

    Google Scholar
     

  • Al-Amoudi, A., Studer, D. & Dubochet, J. Cutting artefacts and cutting process in vitreous sections for cryo-electron microscopy. J. Struct. Biol. 150, 109–121 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • McDowall, A. W. et al. Electron microscopy of frozen hydrated sections of vitreous ice and vitrified biological samples. J. Microsc. 131, 1–9 (1983).

    CAS 
    PubMed 

    Google Scholar
     

  • Gan, L., Ng, C. T., Chen, C. & Cai, S. A collection of yeast cellular electron cryotomography data. Gigascience 8, giz077 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marko, M., Hsieh, C., Schalek, R., Frank, J. & Mannella, C. Focused-ion-beam thinning of frozen-hydrated biological specimens for cryo-electron microscopy. Nat. Methods 4, 215–217 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Rigort, A. et al. Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography. Proc. Natl Acad. Sci. USA 109, 4449–4454 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schaffer, M. et al. Optimized cryo-focused ion beam sample preparation aimed at in situ structural studies of membrane proteins. J. Struct. Biol. 197, 73–82 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Wagner, F. R. et al. Preparing samples from whole cells using focused-ion-beam milling for cryo-electron tomography. Nat. Protoc. 15, 2041–2070 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lucic, V., Rigort, A. & Baumeister, W. Cryo-electron tomography: the challenge of doing structural biology in situ. J. Cell Biol. 202, 407–419 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faruqi, A. R. & McMullan, G. Direct imaging detectors for electron microscopy. Nucl. Instrum. Methods Phys. Res. Sect. A 878, 180–190 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Campbell, M. G. et al. Movies of ice-embedded particles enhance resolution in electron cryo-microscopy. Structure 20, 1823–1828 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schaffer, M. et al. A cryo-FIB lift-out technique enables molecular-resolution cryo-ET within native Caenorhabditis elegans tissue. Nat. Methods 16, 757–762 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Kelley, K. et al. Waffle method: a general and flexible approach for improving throughput in FIB-milling. Nat. Commun. 13, 1857 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schiøtz, O. H. et al. Serial lift-out: sampling the molecular anatomy of whole organisms. Nat. Methods https://doi.org/10.1038/s41592-023-02113-5 (2023). This work presents developments that substantially improve success rates and reproducibility in cryo-FIB micromachining and micromanipulator-assisted lift-out for production of samples suitable for cryo-ET from small multicellular model organisms.

    Article 
    PubMed 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Scheres, S. H. W. Processing of structurally heterogeneous cryo-EM data in RELION. Methods Enzymol. 579, 125–157 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhong, E. D., Bepler, T., Berger, B. & Davis, J. H. CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks. Nat. Methods 18, 176–185 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tegunov, D., Xue, L., Dienemann, C., Cramer, P. & Mahamid, J. Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3.5 Å in cells. Nat. Methods 18, 186–193 (2021). This work developed algorithms that allowed correction of sample deformation during cryo-ET acquisition to obtain, to our knowledge, the first near-atomic reconstruction of a macromolecular complex inside cells.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan, W., Khavnekar, S., Wagner, J., Erdmann, P. & Baumeister, W. STOPGAP: a software package for subtomogram averaging and refinement. Microsc. Microanal. 26, 2516 (2020).

    ADS 

    Google Scholar
     

  • Zivanov, J. et al. A Bayesian approach to single-particle electron cryo-tomography in RELION-4.0. eLife 11, e83724 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Powell, B. M. & Davis, J. H. Learning structural heterogeneity from cryo-electron sub-tomograms with tomoDRGN. Preprint at bioRxiv https://doi.org/10.1101/2023.05.31.542975 (2023).

  • Rangan, R. et al. Deep reconstructing generative networks for visualizing dynamic biomolecules inside cells. Preprint at bioRxiv https://doi.org/10.1101/2023.08.18.553799 (2023).

  • Allard, C. A. H. et al. Structural basis of sensory receptor evolution in octopus. Nature 616, 373–377 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, W. et al. Structural basis for strychnine activation of human bitter taste receptor TAS2R46. Science 377, 1298–1304 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao, X., Fan, X. & Yan, N. Cryo-EM analysis of a membrane protein embedded in the liposome. Proc. Natl Acad. Sci. USA 117, 18497–18503 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mühleip, A. et al. Structural basis of mitochondrial membrane bending by the I–II–III2–IV2 supercomplex. Nature 615, 934–938 (2023).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vallese, F. et al. Architecture of the human erythrocyte ankyrin-1 complex. Nat. Struct. Mol. Biol. 29, 706–718 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walton, T. et al. Axonemal structures reveal mechanoregulatory and disease mechanisms. Nature https://doi.org/10.1038/s41586-023-06140-2 (2023).

  • Abdella, R. et al. Structure of the human Mediator-bound transcription preinitiation complex. Science 372, 52–56 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herbst, D. A. et al. Structure of the human SAGA coactivator complex. Nat. Struct. Mol. Biol. 28, 989–996 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, H., Li, A., Rochaix, J.-D. & Liu, Z. Architecture of chloroplast TOC–TIC translocon supercomplex. Nature 615, 349–357 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kelly, D. F., Abeyrathne, P. D., Dukovski, D. & Walz, T. The affinity grid: a pre-fabricated EM grid for monolayer purification. J. Mol. Biol. 382, 423–433 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, B.-G. et al. Long shelf-life streptavidin support-films suitable for electron microscopy of biological macromolecules. J. Struct. Biol. 195, 238–244 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, F. et al. General and robust covalently linked graphene oxide affinity grids for high-resolution cryo-EM. Proc. Natl Acad. Sci. USA 117, 24269–24273 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maldonado, M., Guo, F. & Letts, J. A. Atomic structures of respiratory complex III2, complex IV, and supercomplex III2–IV from vascular plants. eLife 10, e62047 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peukes, J. et al. The native structure of the assembled matrix protein 1 of influenza A virus. Nature 587, 495–498 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pacheco-Fiallos, B. et al. mRNA recognition and packaging by the human transcription–export complex. Nature 616, 828–835 (2023). This study is an example of the combination of single-particle cryo-EM and cryo-ET in the structural characterization of a complex biological assembly.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferro, L. S. et al. Structural and functional insight into regulation of kinesin-1 by microtubule-associated protein MAP7. Science 375, 326–331 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hooy, R. M., Iwamoto, Y., Tudorica, D. A., Ren, X. & Hurley, J. H. Self-assembly and structure of a clathrin-independent AP-1:Arf1 tubular membrane coat. Sci. Adv. 8, eadd3914 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verbeke, E. J., Mallam, A. L., Drew, K., Marcotte, E. M. & Taylor, D. W. Classification of single particles from human cell extract reveals distinct structures. Cell Rep. 24, 259–268.e3 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kastritis, P. L. et al. Capturing protein communities by structural proteomics in a thermophilic eukaryote. Mol. Syst. Biol. 13, 936 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ho, C.-M. et al. Native structure of the RhopH complex, a key determinant of malaria parasite nutrient acquisition. Proc. Natl Acad. Sci. USA 118, e2100514118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, C.-C. et al. A ‘build and retrieve’ methodology to simultaneously solve cryo-EM structures of membrane proteins. Nat. Methods 18, 69–75 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danev, R. & Baumeister, W. Expanding the boundaries of cryo-EM with phase plates. Curr. Opin. Struct. Biol. 46, 87–94 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Schwartz, O. et al. Laser phase plate for transmission electron microscopy. Nat. Methods 16, 1016–1020 (2019). This study represents an exciting hardware development with impacts in the applicability and interpretability of both cryo-EM and cryo-ET by dramatically improving the contrast of the images and eliminating the requirement for large defocus.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jijumon, A. S. et al. Lysate-based pipeline to characterize microtubule-associated proteins uncovers unique microtubule behaviours. Nat. Cell Biol. 24, 253–267 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Yi, X., Verbeke, E. J., Chang, Y., Dickinson, D. J. & Taylor, D. W. Electron microscopy snapshots of single particles from single cells. J. Biol. Chem. 294, 1602–1608 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Studer, D., Graber, W., Al-Amoudi, A. & Eggli, P. A new approach for cryofixation by high-pressure freezing. J. Microsc. 203, 285–294 (2001).

    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuba, J. et al. Advanced cryo-tomography workflow developments—correlative microscopy, milling automation and cryo-lift-out. J. Microsc. 281, 112–124 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Engel, L. et al. Lattice micropatterning for cryo-electron tomography studies of cell–cell contacts. J. Struct. Biol. 213, 107791 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toro-Nahuelpan, M. et al. Tailoring cryo-electron microscopy grids by photo-micropatterning for in-cell structural studies. Nat. Methods 17, 50–54 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Gorelick, S. et al. PIE-scope, integrated cryo-correlative light and FIB/SEM microscopy. eLife 8, e45919 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boltje, D. B. et al. A cryogenic, coincident fluorescence, electron, and ion beam microscope. eLife 11, e82891 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smeets, M. et al. Correlative cryo-FIB milling using METEOR, an integrated fluorescent light microscope. Microsc. Microanal. 28, 1310–1310 (2022).

    ADS 

    Google Scholar
     

  • Li, W. et al. Integrated multimodality microscope for accurate and efficient target-guided cryo-lamellae preparation. Nat. Methods 20, 268–275 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klumpe, S. et al. A modular platform for automated cryo-FIB workflows. eLife 10, e70506 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dutka, M. & Prokhodtseva, A. AutoTEM 5—fully automated TEM sample preparation for materials science. Microsc. Microanal. 25, 554–555 (2019).

    ADS 

    Google Scholar
     

  • Eisenstein, F., Danev, R. & Pilhofer, M. Improved applicability and robustness of fast cryo-electron tomography data acquisition. J. Struct. Biol. 208, 107–114 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eisenstein, F. et al. Parallel cryo electron tomography on in situ lamellae. Nat. Methods 20, 131–138 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Khavnekar, S. et al. Multishot tomography for high-resolution in situ subtomogram averaging. J. Struct. Biol. 215, 107911 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Krull, A., Buchholz, T.-O. & Jug, F. Noise2Void—learning denoising from single noisy images. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) https://doi.org/10.1109/CVPR.2019.00223 (2019).

  • Lehtinen, J. et al. Noise2Noise: learning image restoration without clean data. In Proc. 35th Intl Conf. Machine Learning, PMLR 80, 2965–2974 (2018).

  • Liu, Y.-T. et al. Isotropic reconstruction for electron tomography with deep learning. Nat. Commun. 13, 6482 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Böhm, J. et al. Toward detecting and identifying macromolecules in a cellular context: template matching applied to electron tomograms. Proc. Natl Acad. Sci. USA 97, 14245–14250 (2000). This study developed the computational method, tested in “phantom” cells, that allows localization of macromolecular complexes with known structures in cryo-ET data.

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Teresa-Trueba, I. et al. Convolutional networks for supervised mining of molecular patterns within cellular context. Nat. Methods 20, 284–294 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moebel, E. et al. Deep learning improves macromolecule identification in 3D cellular cryo-electron tomograms. Nat. Methods 18, 1386–1394 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Rice, G. et al. TomoTwin: generalized 3D localization of macromolecules in cryo-electron tomograms with structural data mining. Nat. Methods 20, 871–880 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arnold, J. et al. Site-specific cryo-focused ion beam sample preparation guided by 3D correlative microscopy. Biophys. J. 110, 860–869 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ganeva, I. & Kukulski, W. Membrane architecture in the spotlight of correlative microscopy. Trends Cell Biol. 30, 577–587 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Kukulski, W. et al. Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision. J. Cell Biol. 192, 111–119 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sartori, A. et al. Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. J. Struct. Biol. 160, 135–145 (2007).

    PubMed 

    Google Scholar
     

  • Dahlberg, P. D. & Moerner, W. E. Cryogenic super-resolution fluorescence and electron microscopy correlated at the nanoscale. Annu. Rev. Phys. Chem. 72, 253–278 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dahlberg, P. D. et al. Cryogenic single-molecule fluorescence annotations for electron tomography reveal in situ organization of key proteins in Caulobacter. Proc. Natl Acad. Sci. USA 117, 13937–13944 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tuijtel, M. W., Koster, A. J., Jakobs, S., Faas, F. G. A. & Sharp, T. H. Correlative cryo super-resolution light and electron microscopy on mammalian cells using fluorescent proteins. Sci. Rep. 9, 1369 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Q., Mercogliano, C. P. & Löwe, J. A ferritin-based label for cellular electron cryotomography. Structure 19, 147–154 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Silvester, E. et al. DNA origami signposts for identifying proteins on cell membranes by electron cryotomography. Cell 184, 1110–1121.e16 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fung, H. K. H. et al. Genetically encoded multimeric tags for subcellular protein localization in cryo-EM. Nat. Methods 20, 1900–1908 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schorb, M., Haberbosch, I., Hagen, W. J. H., Schwab, Y. & Mastronarde, D. N. Software tools for automated transmission electron microscopy. Nat. Methods 16, 471–477 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lucas, B. A. & Grigorieff, N. Quantification of gallium cryo-FIB milling damage in biological lamellae. Proc. Natl Acad. Sci. USA 120, e2301852120 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berger, C. et al. Plasma FIB milling for the determination of structures in situ. Nat. Commun. 14, 629 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laughlin, T. G. et al. Architecture and self-assembly of the jumbo bacteriophage nuclear shell. Nature 608, 429–435 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lacey, S. E., Foster, H. E. & Pigino, G. The molecular structure of IFT-A and IFT-B in anterograde intraflagellar transport trains. Nat. Struct. Mol. Biol. 30, 584–593 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wozny, M. R. et al. In situ architecture of the ER–mitochondria encounter structure. Nature https://doi.org/10.1038/s41586-023-06050-3 (2023).

  • Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Graziadei, A. & Rappsilber, J. Leveraging crosslinking mass spectrometry in structural and cell biology. Structure 30, 37–54 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • O’Reilly, F. J. et al. In-cell architecture of an actively transcribing-translating expressome. Science 369, 554–557 (2020). This study combines cellular cryo-ET with in-cell crosslinking and whole-cell proteomics, and illustrates the power of integrative approaches to capture elusive and transient complexes.

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lucas, B. A. et al. Locating macromolecular assemblies in cells by 2D template matching with cisTEM. eLife 10, e68946 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rickgauer, J. P., Grigorieff, N. & Denk, W. Single-protein detection in crowded molecular environments in cryo-EM images. eLife 6, e25648 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lucas, B. A., Himes, B. A. & Grigorieff, N. Baited reconstruction with 2D template matching for high-resolution structure determination in vitro and in vivo without template bias. eLife 12, RP90486 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Narayan, K. & Subramaniam, S. Focused ion beams in biology. Nat. Methods 12, 1021–1031 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, C. S. et al. An open-access volume electron microscopy atlas of whole cells and tissues. Nature 599, 147–151 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, D. & Starborg, T. Serial block face scanning electron microscopy in cell biology: applications and technology. Tissue Cell 57, 111–122 (2019).

    PubMed 

    Google Scholar
     

  • Harkiolaki, M. et al. Cryo-soft X-ray tomography: using soft X-rays to explore the ultrastructure of whole cells. Emerg. Top. Life Sci. 2, 81–92 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahamid, J. et al. Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science 351, 969–972 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kasinath, V. et al. JARID2 and AEBP2 regulate PRC2 in the presence of H2AK119ub1 and other histone modifications. Science 371, eabc3393 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mosalaganti, S. et al. AI-based structure prediction empowers integrative structural analysis of human nuclear pores. Science 376, eabm9506 (2022). This study capitalizes on AlphaFold2 and cryo-ET data for structural modelling of the human nuclear pore complex with unprecedented precision and completeness.

    CAS 
    PubMed 

    Google Scholar
     

  • Gemmer, M. et al. Visualization of translation and protein biogenesis at the ER membrane. Nature 614, 160–167 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoffmann, P. C. et al. Tricalbins contribute to cellular lipid flux and form curved ER–PM contacts that are bridged by rod-shaped structures. Dev. Cell 51, 488–502.e8 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lucas, B. A., Zhang, K., Loerch, S. & Grigorieff, N. In situ single particle classification reveals distinct 60S maturation intermediates in cells. eLife 11, e79272 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Rosier, D. J. & Klug, A. Reconstruction of three dimensional structures from electron micrographs. Nature 217, 130–134 (1968).

    ADS 
    PubMed 

    Google Scholar
     

  • Dubochet, J. & McDowall, A. W. Vitrification of pure water for electron microscopy. J. Microsc. 124, RP3–RP4 (1981).


    Google Scholar
     

  • Frank, J. Averaging of low exposure electron micrographs of non-periodic objects. Ultramicroscopy 1, 159–162 (1975).

    CAS 
    PubMed 

    Google Scholar
     

  • Hart, R. G. Electron microscopy of unstained biological material: the polytropic montage. Science 159, 1464–1467 (1968).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, Y., Grigorieff, N., Penczek, P. A. & Walz, T. A primer to single-particle cryo-electron microscopy. Cell 161, 438–449 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z. et al. In situ cryo-electron tomography reveals the asymmetric architecture of mammalian sperm axonemes. Nat. Struct. Mol. Biol. 30, 360–369 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoffmann, P. C. et al. Structures of the eukaryotic ribosome and its translational states in situ. Nat. Commun. 13, 7435 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan, W. & Briggs, J. A. G. Cryo-electron tomography and subtomogram averaging. Methods Enzymol. 579, 329–367 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z. et al. The molecular basis for sarcomere organization in vertebrate skeletal muscle. Cell 184, 2135–2150.e13 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pyle, E. & Zanetti, G. Current data processing strategies for cryo-electron tomography and subtomogram averaging. Biochem. J. 478, 1827–1845 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • wwPDB Consortium. Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res. 47, D520–D528 (2018).


    Google Scholar
     

  • Lawson, C. L. et al. EMDataBank unified data resource for 3DEM. Nucleic Acids Res. 44, D396–D403 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Iudin, A. et al. EMPIAR: the Electron Microscopy Public Image Archive. Nucleic Acids Res. 51, D1503–D1511 (2023).

    PubMed 

    Google Scholar
     

  • [ad_2]

    Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Related Posts