Phase-change memory via a phase-changeable self-confined nano-filament

[ad_1]

  • Ambrogio, S. et al. Equivalent-accuracy accelerated neural-network training using analogue memory. Nature 558, 60–67 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding, K. et al. Phase-change heterostructure enables ultralow noise and drift for memory operation. Science 366, 210–215 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Khan, A. I. et al. Ultralow-switching current density multilevel phase-change memory on a flexible substrate. Science 373, 1243–1247 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Raoux, S., Xiong, F., Wuttig, M. & Pop, E. Phase change materials and phase change memory. MRS Bull. 39, 703–710 (2014).

    Article 

    Google Scholar
     

  • Ahn, C. et al. Energy-efficient phase-change memory with graphene as a thermal barrier. Nano Lett. 15, 6809–6814 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Im, D. H. et al. A unified 7.5 nm dash-type confined cell for high performance PRAM device. In IEEE International Electron Devices Meeting 1–4 (IEEE, 2008).

  • Kang, M. J. et al. PRAM cell technology and characterization in 20 nm node size. In IEEE International Electron Devices Meeting 3.1.1–3.1.4 (IEEE, 2011).

  • Mehonic, A. & Kenyon, A. J. Brain-inspired computing needs a master plan. Nature 604, 255–260 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Roy, K., Jaiswal, A. & Panda, P. Towards spike-based machine intelligence with neuromorphic computing. Nature 575, 607–617 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia, Q. & Yang, J. J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 18, 309–323 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ielmini, D. & Ambrogio, S. Emerging neuromorphic devices. Nanotechnology 31, 092001 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, S. et al. Extremely high performance, high density 20 nm self-selecting cross-point memory for Compute Express Link. In 2022 IEEE International Electron Devices Meeting 18.6.1–18.6.4 (IEEE, 2022).

  • Ielmini, D. & Wong, H. S. P. In-memory computing with resistive switching devices. Nat. Electron. 1, 333–343 (2018).

    Article 

    Google Scholar
     

  • Kim, T. & Lee, S. Evolution of phase-change memory for the storage-class memory and beyond. IEEE Trans. Electron Dev. 67, 1394–1406 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Choi, S. et al. SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations. Nat. Mater. 17, 335–340 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao, P. et al. Fully hardware-implemented memristor convolutional neural network. Nature 577, 641–646 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, S. O., Jeong, H., Park, J., Bae, J. & Choi, S. Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing. Nat. Commun. 13, 2888 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goh, Y. et al. High performance and self-rectifying hafnia-based ferroelectric tunnel junction for neuromorphic computing and TCAM applications. In IEEE International Electron Devices Meeting 17.2.1–17.2.4 (IEEE, 2021).

  • Jung, S. et al. A crossbar array of magnetoresistive memory devices for in-memory computing. Nature 601, 211–216 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Koelmans, W. W. et al. Projected phase-change memory devices. Nat. Commun. 6, 8181 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Salinga, M. et al. Monatomic phase change memory. Nat. Mater. 17, 681–685 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, S. M. et al. Relaxation oscillation effect of the ovonic threshold switch on the SET characteristics of phase-change memory in cross-point structure. IEEE Electron Device Lett. 42, 1759–1761 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Shukla, K. D., Saxena, N., Durai, S. & Manivannan, A. Redefining the speed limit of phase change memory revealed by time-resolved steep threshold-switching dynamics of AgInSbTe devices. Sci. Rep. 6, 37868 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng, C. et al. Performance improvement of Sb2Te3 phase change material by Al doping. Appl. Surf. Sci. 257, 10667–10670 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hu, J. et al. Cr-doped Sb2Te materials promising for high performance phase-change random access memory. J. Alloys Compd. 908, 164593 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Tong, L. et al. Improved phase-change characteristics of Si doped GeSbTe thin films used for phase change memory. J. Non-Cryst. Solids 358, 2402–2404 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, T. et al. Carbon doping induced Ge local structure change in as-deposited Ge2Sb2Te5 film by EXAFS and Raman spectrum. AIP Adv. 8, 025201 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Yang, W., Hur, N., Lim, D. H., Jeong, H. & Suh, J. Heterogeneously structured phase-change materials and memory. J. Appl. Phys. 129, 050903 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lama, G. et al. Multilayered Sb-rich GeSbTe phase-change memory for best endurance and reduced variability. IEEE Trans. Electron Devices 69, 4248–4253 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xiong, F. et al. Low-power switching of phase-change materials with carbon nanotube electrodes. Science 332, 568–570 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang, J., Jeyasingh, R. G. D., Chen, H. Y. & Wong, H. S. P. An ultra-low reset current cross-point phase change memory with carbon nanotube electrodes. IEEE Trans. Electron Devices 59, 1155–1163 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Choi, B. J. et al. Phase change memory cell using Ge2Sb2Te5 and softly broken-down TiO2 films for multilevel operation. Appl. Phys. Lett. 97, 132107 (2010).

    Article 
    ADS 

    Google Scholar
     

  • You, B. K., Byun, M., Kim, S. & Lee, K. J. Self-structured conductive filament nanoheater for chalcogenide phase transition. ACS Nano 9, 6587–6594 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gallo, M., le, Kaes, M., Sebastian, A. & Krebs, D. Subthreshold electrical transport in amorphous phase-change materials. New J. Phys. 17, 093035 (2015).

    Article 

    Google Scholar
     

  • Ielmini, D. & Zhang, Y. Evidence for trap-limited transport in the subthreshold conduction regime of chalcogenide glasses. Appl. Phys. Lett. 90, 192102 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Gunti, S. R., Ayiriveetil, A. & Sundarrajan, A. Thermodynamic, kinetic and electrical switching studies on Si15Te85-xInx glasses: observation of boolchand intermediate phase. J. Solid State Chem. 184, 3345–3352 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Roy, D., Tanujit, B., Jagannatha, K. B., Asokan, S. & Das, C. Influence of Cu doping in Si-Te-based chalcogenide glasses and thin films: electrical switching, morphological and raman studies. IEEE Trans. Electron Devices 68, 1196–1201 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Saito, Y., Sutou, Y. & Koike, J. Crystallization behavior and resistance change in eutectic Si15Te85 amorphous films. Thin Solid Films 520, 2128–2131 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Petersen, K. E., Birkholz, U. & Adler, D. Properties of crystalline and amorphous silicon telluride. Phys. Rev. B 8, 1453 (1973).

    Article 
    ADS 

    Google Scholar
     

  • Redaelli, A. Phase Change Memory: Device Physics, Reliability and Applications (Springer International Publishing, 2017).

  • Raoux, S. & Wuttig, M. Phase Change Materials: Science and Applications (Springer New York, 2008).

  • Khan, A. I. et al. Unveiling the effect of superlattice interfaces and intermixing on phase change memory performance. Nano Lett. 22, 6285–6291 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Niraula, D. & Karpov, V. Numerical modeling of resistive switching in RRAM device. In COMSOL Conference 1–7 (COMSOL, 2017).

  • Park, S.-O. et al. Phase-change memory via a phase-changeable self-confined nano-filament_Source-Data. Zenodo https://doi.org/10.5281/zenodo.10663106 (2024).

  • Ielmini, D. Threshold switching mechanism by high-field energy gain in the hopping transport of chalcogenide glasses. Phys. Rev. B 78, 035308 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Hwang, T. Y. et al. Rice-like tellurium thin films deposited by a galvanic displacement reaction and ultra-high sensing response to hydrogen sulfide (H2S) gas at room temperature. Sens. Actuat. B 282, 756–764 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Karthik, R. et al. Highly sensitive pyroelectric detector using atomically thin nanoscale silicon ditelluride. ACS Appl. Nano Mater. 6, 10168–10177 (2023).

    Article 

    Google Scholar
     

  • Park, W. I. et al. Self-assembled incorporation of modulated block copolymer nanostructures in phase-change memory for switching power reduction. ACS Nano 7, 2651–2658 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neumann, C. M. et al. Engineering thermal and electrical interface properties of phase change memory with monolayer MoS2. Appl. Phys. Lett. 114, 082103 (2019).

    Article 
    ADS 

    Google Scholar
     

  • [ad_2]

    Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Related Posts