[ad_1]
Ambrogio, S. et al. Equivalent-accuracy accelerated neural-network training using analogue memory. Nature 558, 60–67 (2018).
Ding, K. et al. Phase-change heterostructure enables ultralow noise and drift for memory operation. Science 366, 210–215 (2019).
Khan, A. I. et al. Ultralow-switching current density multilevel phase-change memory on a flexible substrate. Science 373, 1243–1247 (2021).
Raoux, S., Xiong, F., Wuttig, M. & Pop, E. Phase change materials and phase change memory. MRS Bull. 39, 703–710 (2014).
Ahn, C. et al. Energy-efficient phase-change memory with graphene as a thermal barrier. Nano Lett. 15, 6809–6814 (2015).
Im, D. H. et al. A unified 7.5 nm dash-type confined cell for high performance PRAM device. In IEEE International Electron Devices Meeting 1–4 (IEEE, 2008).
Kang, M. J. et al. PRAM cell technology and characterization in 20 nm node size. In IEEE International Electron Devices Meeting 3.1.1–3.1.4 (IEEE, 2011).
Mehonic, A. & Kenyon, A. J. Brain-inspired computing needs a master plan. Nature 604, 255–260 (2022).
Roy, K., Jaiswal, A. & Panda, P. Towards spike-based machine intelligence with neuromorphic computing. Nature 575, 607–617 (2019).
Xia, Q. & Yang, J. J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 18, 309–323 (2019).
Ielmini, D. & Ambrogio, S. Emerging neuromorphic devices. Nanotechnology 31, 092001 (2020).
Hong, S. et al. Extremely high performance, high density 20 nm self-selecting cross-point memory for Compute Express Link. In 2022 IEEE International Electron Devices Meeting 18.6.1–18.6.4 (IEEE, 2022).
Ielmini, D. & Wong, H. S. P. In-memory computing with resistive switching devices. Nat. Electron. 1, 333–343 (2018).
Kim, T. & Lee, S. Evolution of phase-change memory for the storage-class memory and beyond. IEEE Trans. Electron Dev. 67, 1394–1406 (2020).
Choi, S. et al. SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations. Nat. Mater. 17, 335–340 (2018).
Yao, P. et al. Fully hardware-implemented memristor convolutional neural network. Nature 577, 641–646 (2020).
Park, S. O., Jeong, H., Park, J., Bae, J. & Choi, S. Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing. Nat. Commun. 13, 2888 (2022).
Goh, Y. et al. High performance and self-rectifying hafnia-based ferroelectric tunnel junction for neuromorphic computing and TCAM applications. In IEEE International Electron Devices Meeting 17.2.1–17.2.4 (IEEE, 2021).
Jung, S. et al. A crossbar array of magnetoresistive memory devices for in-memory computing. Nature 601, 211–216 (2022).
Koelmans, W. W. et al. Projected phase-change memory devices. Nat. Commun. 6, 8181 (2015).
Salinga, M. et al. Monatomic phase change memory. Nat. Mater. 17, 681–685 (2018).
Hong, S. M. et al. Relaxation oscillation effect of the ovonic threshold switch on the SET characteristics of phase-change memory in cross-point structure. IEEE Electron Device Lett. 42, 1759–1761 (2021).
Shukla, K. D., Saxena, N., Durai, S. & Manivannan, A. Redefining the speed limit of phase change memory revealed by time-resolved steep threshold-switching dynamics of AgInSbTe devices. Sci. Rep. 6, 37868 (2016).
Peng, C. et al. Performance improvement of Sb2Te3 phase change material by Al doping. Appl. Surf. Sci. 257, 10667–10670 (2011).
Hu, J. et al. Cr-doped Sb2Te materials promising for high performance phase-change random access memory. J. Alloys Compd. 908, 164593 (2022).
Tong, L. et al. Improved phase-change characteristics of Si doped GeSbTe thin films used for phase change memory. J. Non-Cryst. Solids 358, 2402–2404 (2012).
Li, T. et al. Carbon doping induced Ge local structure change in as-deposited Ge2Sb2Te5 film by EXAFS and Raman spectrum. AIP Adv. 8, 025201 (2018).
Yang, W., Hur, N., Lim, D. H., Jeong, H. & Suh, J. Heterogeneously structured phase-change materials and memory. J. Appl. Phys. 129, 050903 (2021).
Lama, G. et al. Multilayered Sb-rich GeSbTe phase-change memory for best endurance and reduced variability. IEEE Trans. Electron Devices 69, 4248–4253 (2022).
Xiong, F. et al. Low-power switching of phase-change materials with carbon nanotube electrodes. Science 332, 568–570 (2011).
Liang, J., Jeyasingh, R. G. D., Chen, H. Y. & Wong, H. S. P. An ultra-low reset current cross-point phase change memory with carbon nanotube electrodes. IEEE Trans. Electron Devices 59, 1155–1163 (2012).
Choi, B. J. et al. Phase change memory cell using Ge2Sb2Te5 and softly broken-down TiO2 films for multilevel operation. Appl. Phys. Lett. 97, 132107 (2010).
You, B. K., Byun, M., Kim, S. & Lee, K. J. Self-structured conductive filament nanoheater for chalcogenide phase transition. ACS Nano 9, 6587–6594 (2015).
Gallo, M., le, Kaes, M., Sebastian, A. & Krebs, D. Subthreshold electrical transport in amorphous phase-change materials. New J. Phys. 17, 093035 (2015).
Ielmini, D. & Zhang, Y. Evidence for trap-limited transport in the subthreshold conduction regime of chalcogenide glasses. Appl. Phys. Lett. 90, 192102 (2007).
Gunti, S. R., Ayiriveetil, A. & Sundarrajan, A. Thermodynamic, kinetic and electrical switching studies on Si15Te85-xInx glasses: observation of boolchand intermediate phase. J. Solid State Chem. 184, 3345–3352 (2011).
Roy, D., Tanujit, B., Jagannatha, K. B., Asokan, S. & Das, C. Influence of Cu doping in Si-Te-based chalcogenide glasses and thin films: electrical switching, morphological and raman studies. IEEE Trans. Electron Devices 68, 1196–1201 (2021).
Saito, Y., Sutou, Y. & Koike, J. Crystallization behavior and resistance change in eutectic Si15Te85 amorphous films. Thin Solid Films 520, 2128–2131 (2012).
Petersen, K. E., Birkholz, U. & Adler, D. Properties of crystalline and amorphous silicon telluride. Phys. Rev. B 8, 1453 (1973).
Redaelli, A. Phase Change Memory: Device Physics, Reliability and Applications (Springer International Publishing, 2017).
Raoux, S. & Wuttig, M. Phase Change Materials: Science and Applications (Springer New York, 2008).
Khan, A. I. et al. Unveiling the effect of superlattice interfaces and intermixing on phase change memory performance. Nano Lett. 22, 6285–6291 (2022).
Niraula, D. & Karpov, V. Numerical modeling of resistive switching in RRAM device. In COMSOL Conference 1–7 (COMSOL, 2017).
Park, S.-O. et al. Phase-change memory via a phase-changeable self-confined nano-filament_Source-Data. Zenodo https://doi.org/10.5281/zenodo.10663106 (2024).
Ielmini, D. Threshold switching mechanism by high-field energy gain in the hopping transport of chalcogenide glasses. Phys. Rev. B 78, 035308 (2008).
Hwang, T. Y. et al. Rice-like tellurium thin films deposited by a galvanic displacement reaction and ultra-high sensing response to hydrogen sulfide (H2S) gas at room temperature. Sens. Actuat. B 282, 756–764 (2019).
Karthik, R. et al. Highly sensitive pyroelectric detector using atomically thin nanoscale silicon ditelluride. ACS Appl. Nano Mater. 6, 10168–10177 (2023).
Park, W. I. et al. Self-assembled incorporation of modulated block copolymer nanostructures in phase-change memory for switching power reduction. ACS Nano 7, 2651–2658 (2013).
Neumann, C. M. et al. Engineering thermal and electrical interface properties of phase change memory with monolayer MoS2. Appl. Phys. Lett. 114, 082103 (2019).
[ad_2]
Source link